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Abstract

Modem warfare is placing an increasing reliance on global communications. Currently

under development are several Low Earth Orbit (LEO) satellite systems that propose to

deliver voice and data traffic to subscribers anywhere on the globe. However, very little is

known about the performance of conventional routing protocols under orbital conditions

where the topology changes on a scale of minutes rather than days.

This thesis compares two routing protocols in a LEO environment. One (Extended

Bellman-Ford) is a conventional terrestrial routing protocol, while the other (Darting) is a

new protocol which has been proposed as suitable for use in LEO networks. These

protocols are compared via computer simulation in two of the proposed LEO systems

(Globalstar and Iridium), under various traffic intensities. Comparative measures of packet

delay, convergence speed, and protocol overhead are made

It was found both protocols were roughly equivalent in end-to-end delay characteristics,

though the Darting protocol had a much higher overhead load and demonstrated higher

instability at network update periods. For example, while steady-state end-to-end delays

were within a few milliseconds, in one case Darting showed an increase of 764% in

convergence time over Extended Bellman-Ford with an increase of 149% in overhead.

Over all cases, Darting required an average of 72.1% more overhead than Extended

Bellman-Ford to perform the same work. Darting was handicapped by its strong correlation

between data traffic and protocol overhead. Modifications to reduce this overhead would

result in much closer performance.

vii
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1. INTRODUCTION

1.1 Background

Since the dawn of history, humanity has been driven to improve his communications;

striving always to exchange information faster and farther. As this century draws to a close,

we are poised to take a significant step along this path with the advent of truly global

personal communications.

The lure of ubiquitous global communications has lead to several large-scale

commercial efforts in the US and abroad to loft multi-satellite networks in Low Earth Orbit

(LEO) to provide mobile communications from any point on the earth. To reduce

propagation delay, these systems attempt to minimize the number of links between the

ground and space based portions of the network. Towards this end, several of the projects

intend to use inter-satellite links to route the circuits completely in the orbital environment.

The large velocity of the satellites with respect to the ground and one another, however,

gives rise to high demands upon the circuit setup routine as it attempts to find the best path

through a rapidly changing network topology.

1.2 The Problem

While the majority of the current proposals deal with voice traffic in a circuit switched

metaphor, at least one project will target data traffic. The addition of packet switching

capability compounds the difficulty of the space-based routing algorithm, as it attempts to

dynamically optimize paths through the LEO network links. Little is known about the

ability of current routing protocols, designed for a relatively static terrestrial network

topology, to adapt to the constantly changing configuration of the space based links. Most

especially, the ability of the routers to converge upon a satisfactory network state within this

environment is critical.



This thesis attempts to shed light on the tradeoffs encountered for the problem of

routing protocol selection. Because of the highly dynamic nature of these LEO

constellations, selection of the routing algorithm can greatly affect the efficiency of the

system. By studying the performance of two representative protocols under various

operating conditions, we can begin to understand the advantages and drawbacks of each.

1.3 Scope

This study determines the speed of convergence, average packet traversal delay, and

protocol overhead of two representative routing protocols (Extended Bellman-Ford and

Darting). This is done on two different satellite configurations (roughly based on the current

plans for the Iridium and Globalstar systems). The thesis makes no attempt to model or

account for link quality, or other atmospheric and electromagnetic degradation effects.

1.4 Approach

Currently existing LEO network simulation models for the two satellite topologies

mentioned above were modified to allow insertion of differing routing protocols.

Additionally, the models, which approximated network convergence by using only one

routing device, were extended to allow autonomous routing processes to exist on each

satellite node. Each of the protocols was tested on the satellite networks at various traffic

intensities using the BoNES Designer and SatLab simulation tools. Several runs were

accomplished to increase the confidence in the results.
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2. PRIOR WORK

Most of the commercial satellite communication (SATCOM) networks are only a few

years away from operation, so it is no surprise that a good deal of research has been done on

the structure and operation of Low Earth Orbit (LEO) SATCOM networks. This section

provides a brief summary of the major challenges, and the various proposals for solutions

that have been made. For organization, the chapter divides the topics up into sections

corresponding to the OS1 reference model.

2.1 Level I - Physical

For a global communications system to be a reality, the constellation must be visible

from every point on the earth from which a customer might desire to make a connection.

Presently, most companies place communication satellites in geosynchronous orbit.

Unfortunately, at geosynchronous altitudes, propagation time of radio signals becomes a

significant source of delay, and signal power requirements become large. This makes

systems of "GEO" satellites somewhat less than desirable in global personal

communications networks.

To combat the problems associated with geosynchronous altitudes, a satellite can be put

into orbit much closer to the surface. While this solves the problems of signal power and

delay, the satellite loses synchronization with a specific location, and can only see a much

smaller area of the earth. To completely cover the surface, then, many more LEO satellites

are necessary. However, because LEO satellites orbit below the Earth's Van-Allen radiation

belts, they have the offsetting advantage of much cheaper construction.

Several studies have been done to determine constellations of LEO satellites that can

ensure global coverage using an arbitrary number of satellites. Walker [Wal77] was among

the first to propose such a system, and several commercial ventures have adopted the
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Walker "delta" network. Walker constellations consist of several planes of inclined orbits

with multiple satellites per plane. The system is described by six parameters that are chosen

by the system designer to produce the desired degree of network coverage. For example,

Globalstar (one of the leading LEO contenders) proposes to construct their constellation in

a 48/8/1/52/1389 format. This means that there will be 48 satellites in 8 different orbital

planes, with a 7.5' phase shift between the planes. The orbital planes themselves will have

an inclination of 52 degrees and the satellites will orbit at 1389 kilometers. For Globalstar,

these numbers ensure that at latitudes below 55', there is at least one satellite visible at an

elevation of 40 degrees or greater [Rou93].

Another popular family of constellations is based upon the work of Adams and Rider

[AdR87] who proposed the use of polar orbits to provide n-redundant global coverage. This

is the orbital family used by Iridium, another leading network proposal. The constellation is

based upon the idea of a "street of coverage" provided by each orbital plane. The designer

can make any desired number of satellites visible from an arbitrary spot on the earth by

simply "narrowing" the street (bringing the orbits closer together). Current plans for

Iridium call for six 86.40 inclination orbits of 11 satellites each at an altitude of 780km

[WuM94]. Minimum viewing elevation provided by this configuration would be about 10

degrees [Leo91].

One system (Teledesic by Teledesic Corp.) even proposes to use a sun-synchronous

orbital configuration. Sun synchronous orbits are retrograde orbits. This means that their

angle of inclination is greater than 90 degrees, so they seem to orbit backwards as viewed

from the surface. If the inclination and other orbital parameters are chosen correctly, the

satellite will maintain a constant position relative to the sun. This leads to benefits in

constant time-of-day traffic scheduling [WuM94]. In other ways, this constellation type is

very similar to the Adams and Rider family. Teledesic plans to use 21 orbital planes with a

98.20 inclination spaced about 9.5 degrees apart at an altitude of 700km. Each plane will
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hold 40 satellites, providing access to two satellites at almost all times, one of which will

always be available at a minimum 400 elevation [Tuc93].

2.2 Level 2 - Link Control

Once the satellites are in place, and the necessary frequencies obtained, the problem

becomes how to organize information exchange over the communication links. Most of

these issues have been tackled for terrestrial networks, but the unique characteristics of the

orbital environment make some techniques more useful than others, and in some cases

require completely new approaches.

Binder, et. al., propose a synchronous slotted approach in [BiH87], where the authors

study the performance of inter-satellite crosslinks in a 240 vehicle constellation. First, they

note that because the propagation times in orbit are generally much longer than packet

transmission times, carrier sensing protocols are not useful. Instead, the authors develop a

new approach that they call Pseudo-Random Scheduling (PRS). This method is applied on a

pairwise basis for each crosslink, allowing freedom from the requirements of coordinating

global synchronization.

PRS dynamically forms crosslinks as each satellite comes into range. In the method

described, a satellite is assumed to be able to predict its own orbital position, but have no

knowledge of the position of other satellites. Each satellite is also assumed to have an omni-

directional listen and transmit capability. The omnidirectional mode is used to send special

"hello" packets during idle times that contain the sender's ID, current position and motion,

local clock time, and its random number seed. If a satellite listening in omni mode receives a

hello packet, and decides based on the information received that it wants to establish a link,

it responds to the hello packet with a similar reply. This packet is transmitted on a

directional beam formed with the information in the original hello. The originator, on

reception of the reply packet, then completes the handshaking by replying with a directional

beam of its own.
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Turning to the characteristics of the up and down links, transmitters in the proposed

LEO SATCOM networks may occupy several different cells during any single call. Unlike

terrestrial cellular networks, here it is the cells that are moving with respect to the (relatively)

stationary transmitters. It is of interest then to determine how frequently the average user

can expect to encounter handoffs and the effect these handoffs will have on the quality of

the call and performance of the network.

The authors in [GaG94] derive an expression for the average number of handoffs

experienced by a particular user based upon the speed of the LEO constellation and the

radius of the satellite footprints. The derived relationship is:

- (3 + 2V/ ) 'V (2.1)

ry

o)X xR3/2

where V, is the LEO speed with respect to the surface ( V - V- ),

R, is the LEO orbit radius, and R. is the Geosynchronous orbit radius. From this it can

be seen that the expected number of handoffs is a linear function of the footprint radius (r)

and velocity of the constellation (V), times the average duration of a call (1/i).

2.3 Level 3 -Routing

If the satellites in our network were perfectly stationary, the questions of routing could

be easily answered by any number of currently existing protocols. However, systems give up

this ability when they chose to use LEO satellites to capitalize on their lower propagation

and power characteristics. Thus, the question becomes, how do we properly route data

packets in a network where there is no fixed relation between routing nodes and end-user

devices? Each of the commercial efforts currently underway has plans for some type of

proprietary routing protocol to address these issues, but published literature on these

techniques is surprisingly sparse. A few teams have addressed specific issues though, and
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some relevant information from the Strategic Defense Initiative (SDI) program has also

been released.

The problem of determining the shortest path through the network given multiple

constraints is not trivial. Jaffe [Jaf84] has proposed an algorithm that solves shortest-path

multiple constraints in O(n5b log nb) time [O(n4b log nb) time per node in a distributed

implementation] and O(nb) space per node pair. Here n is the number of nodes and b is the

largest value of the other constraints. He also presents three approximations to the solution

that run in polynomial time and produce paths no worse than 2, 1.62, or 1.5 times the

optimal solution.

Jaffe's method works by simultaneously calculating all the possible shortest distance

paths between each node pair. Once the initial tables are calculated, subsequent routing

decisions are simple table-lookups, thus amortizing the high initial runtime. A possible

refinement whereby table entries that provide little value are dropped in order to economize

memory requirements is also discussed. Additionally, Kung and Shacham present a

somewhat simpler algorithm in [KuS84] that is useful in a centralized or semi-centralized

environment and runs in O(n2mT1... T,) time. (Tx is the value of the corresponding

constraint.)

Several authors [BaA93], [ArA94] have looked at using the neural network "mean field

annealing" technique to solve the routing problem for circuit switched networks. Circuit

switched networks are typically constructed to allow alternative routes to be chosen for a

transaction if the direct path is unavailable for some reason.' While this results in improved

1 Almost every circuit switched routing proposal is based upon a modification to AT&T's Dynamic Non-Hierarchical

Routing protocol used in their long-haul network. DNHR is applied to the top-level mesh-connected circuit switched
network in such a way as to assure that at most two links are used to complete every call. When a call is placed, a specific
prioritized set of paths is chosen based upon the date and time of day. Then, when determining the circuit setup, the
direct path is checked for an available link first. If one does not exist, the various "alt-routes" are investigated to attempt
to place the call. If these are also busy, the call is blocked. Alt-routes are chosen to involve only one other intermediary
node, and the routing choice sets are optimized off-line and downloaded to the routers periodically based upon network

usage patterns. [Ash90]
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performance at moderate loads, it degrades quickly at higher traffic levels. The proposed

solution involves reserving a fixed amount of bandwidth on each link for direct-routed calls

only. The problem then becomes choosing this reservation value on a dynamic basis to best

optimize the network.

As a solution, the technique of mean field annealing is applied to the network to

generate routing maps that globally minimize the total call-block rate of the network, and

maximize total throughput. A controller module monitors the network performance and

determines when a new map needs to be calculated. Neural networks are composed of

networks of simple linear operators that take an input, and based upon an "energy"

function, provide an output. Through the use of feedback, the network converges to a

solution. Energy functions are composed of a cost term, (which in this case is the total

block rate of the network), and a constraint term that penalizes the cost if applicable

constraints are violated. For example, constraints for the circuit switched case could specify

that each node can only be assigned one reservation parameter, and that the total number of
"on" neurons be equal to the number of network links.

Once the neural net is constructed, annealing works by repeatedly computing the

network costs after perturbing the input slightly and keeping an updated entry for the

current minimum values. In this manner, an entire network map indicating the shortest

paths between each node pair may be constructed. To prevent the solution from being

caught in a local minimum, non-optimal changes are allowed with a finite probability during

each iteration. This effectively allows the simulation to "back-out" of a local minimum.

Details can be found in [ArA94].

With the algorithms mentioned above, and others similar to them, it is possible to

determine the optimal routing path for a given data packet. However, conventional

flooding-type routing algorithms are not well suited to the orbital environment due to the

large number of overhead messages they generate. This, coupled with long link propagation

times, may result in transient loops forming in the network while a topology update is in
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progress. The authors in [GrZ89] have investigated the performance of conventional

Ford/Fulkerson and Merlin/Segall routing algorithms in SATCOM networks.

Ford/Fulkerson operates by having each node maintain a table of costs for all

destinations reachable through its outgoing links. Upon detecting a change in one of these

links, a node will send a control message to each of its neighbors. These neighbors will in

turn update their own internal tables with the new information and pass the update farther

along the network. The advantages of this method are its simplicity and asynchronicity.

Disadvantages are slow convergence time and susceptibility to looping.

In contrast, the Marlin/Segall method is designed to prevent formation of these

transient loops during a network update, but it does so at the expense of a slower

convergence rate. In Merlin/Segall, all paths are stored as directed trees rooted at the sink

node, which prevents loop formation due to the acyclic nature of trees. Updates begin at the

sink node and propagate up-tree until the farthest node hears from all its neighbors. This

farthest-distance estimate is then returned down-tree, with each node updating it's shortest-

path entry upon reception of the return packet. Multiple update cycles may be required in

the presence of network node failures.

The authors compared each algorithm on a hybrid LEO/GEO network of 18 and 6

nodes respectively. They found that the extra loop-preventing overhead introduced in

Merlin/Segall led to performance an order of magnitude slower than the Ford/Fulkerson

method.

The authors of [CaA87] present another type of loop-free algorithm that they designed

specifically for the orbital environment. Created for SDI, its goals were distributed

execution, robust recovery from massive failures, rapid adaptation to frequent load

fluctuations and connectivity changes, and low delay with optimal throughput. The

underlying topology for the network is assumed to be hierarchical, with a backbone of no

more than 100 nodes serving clusters of second-level devices. The algorithm operates on
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the backbone nodes and runs in 0(n2) time with 0(n) messages per link. The algorithm uses

a constrained flooding algorithm to broadcast "local" status periodically, with complete

topology information being disseminated at longer intervals. This network information also

includes congestion statistics. Load sharing among multiple paths to the destination is

performed using a heuristic. Routing updates are synchronous (which is used to guarantee

absence of transient loops), and occur approximately every 5 seconds. In the event of

satellite failure, special "NOPATH" messages are used to speed re-convergence of local

tables in response to the failure.

A drawback of the preceding methods is the relatively high overhead associated with the

control traffic. Tsai and Ma [TsM95] present a novel approach that they term "Darting" to

overcome the high message overhead involved with flooding-type algorithms. The key idea

behind Darting is to postpone transmission of topology update messages until it becomes

necessary to actually transmit a data message. Darting uses two update mechanisms, which

are triggered with the presence of a data packet. One mechanism updates the downstream

nodes (i.e. "successor" nodes that the data packet will be visiting shortly in the future) and

the other mechanism updates the upstream nodes ("predecessor" nodes.) The predecessor

mechanism is triggered when the local node detects a discrepancy in topology views between

itself and its immediate predecessor. When invoked, the mechanism send a special update

packet backwards along the data path to pass updated network information to the sender.

Successor updates are carried out by embedding all recent local topology changes in the

outgoing message, which serves to propagate network changes downstream along the data

path. By embedding local topology changes in each passing data packet, Darting eventually

disseminates topology changes throughout the network.

Unlike conventional flooding algorithms, which exchange periodic control messages to

prevent the formation of "message traps" (i.e. routing loops), Darting concentrates on

dynamically breaking any traps that have formed. This eliminates the need to exchange

update messages on a regular basis. When a source node desires to transmit a packet to a

neighbor, it consults its routing tables, and places the anticipated cost of delivering the
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message to the destination in a header field. It then calculates the anticipated cost for its

neighbor to transmit the message to the destination, and places that in another header field.

Upon receiving the packet, the neighbor node can use this data to determine if the sender is

using current routing information. If a discrepancy is detected, the predecessor update

mechanism is invoked. Normally this mechanism only updates the immediate predecessor.

Optionally, though, predecessor update messages can be allowed to propagate farther back

upstream before being discarded. This will result in faster network convergence at the

expense of additional control traffic overhead.

Shacham [Sha88] conducts a detailed look at the obstacles and hurdles that the network

and transport level protocols will encounter in orbit. He proposes using the predictability of

short-term changes in the local environment to reduce the amount of topology-update

traffic generated by the network. This is based upon the assumption that any single satellite

will have information about the positions and velocities of its neighbors and be able to

detect when two of them will come into communications range. It can then notify the

network of the expected changes in the local environment for a short time into the future,

and can do this at a much lower frequency than a simply reactive approach.

Shacham also looks at the problem of address binding. Because the satellites above any

particular user are constantly changing, there is no fixed relationship between a specific user

and network node. Thus, addresses based on geographical location of the end terminal are

suggested, with the possibility of multi-homing, so that a packet can be routed to "any

satellite above Washington DC", for example. Information on the locations of specific

destinations would be stored in a distributed database indexed by destination ID. It is also

suggested that satellites dynamically reduce topology complexity by only forming network

links with a subset of available neighbors.

Finally, because of the combination of high link data rate with high propagation delay,

the author recommends avoidance of the go-back-n type transport protocols in favor of

selective repeat protocols such as VMTP. This avoids the unnecessary retransmission of
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packets that may have been received correctly, which can be large due to the large window

size required to handle the rate/delay combination, as discussed below.

2.4 Level 4 - Transport

While each of the link control methods of section two has some provision for error

detection and retransmission, normal methods of automatic repeat requesting (ARQ) are

not well suited to orbital links. This is primarily due the simultaneous occurrence of high

data rates and high propagation times found in this environment. For conventional go-

back-n ARQ protocols, the large window sizes required for this rate/propagation ratio lead

to many needless packet retransmissions. Because of this problem, reliable transport

provided by Level 4 protocols becomes increasingly important.

VMTP is a transport level protocol that has been suggested as a possible candidate for

end-to-end reliable delivery over LEO SATCOM systems [Sha88]. It provides higher level

processes with the facilities to conduct "conversations" between end nodes using special

constructs termed "message transactions". Each high level conversation is built out of

VMTP message transaction primitives. A message transaction is a request-response pair

with reliable delivery on both the request and response messages. By replacing the

conventional virtual circuit paradigm with these message transactions, VMTP is able to cut

down the number of packets exchanged for simple operations like file query, get time, and

basic remote procedure calls to a single request-response pair. This is in contrast to a virtual

circuit based protocol like TCP that normally requires six or more packets for the same

operations. VMTP also has provisions for packet duplication suppression even when the

delay between the original and duplicate is relatively long.

Additionally, VMTP includes a method of dynamic transmission rate "throttling" via its

selective repeat retransmission scheme. Each VMTP message is divided into a packet group

with a bitmask field for the group placed in each packet header. Each bit in the bitmask

corresponds to a packet in the group. Therefore if the receiver gets any portion of the

packet group, it can easily indicate to the transmitter which packets to resend by simply
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returning the mask with the corresponding bits set. In the case where the transmission rate

is too high for the network, upon analyzing the returned bitmask, the sender may discover

that every kth packet is being lost. It can then increase the amount of time between each

packet in the group to accommodate current network conditions and reduce subsequent re-

transmissions due to buffer overruns [Che86]. It is highly preferable for the transmitter to

pace itself rather than waste network bandwidth and satellite power in needless

retransmissions.

2.5 Current System Proposals

Three proposed LEO systems seem to be emerging as the top contenders to actually

field a workable communications system. These are Itidium by Motorola, Globalstar by

Loral/QUALCOMM, and Teledesic by Teledesic Corp. (Formerly known as the Calling

network.) Each has chosen slightly different implementations (the structure of each

constellation was detailed in section 2.1.)

Globalstar and Iridium plan to focus primarily on voice and facsimile traffic in the 4800

baud range, while Teledesic intends to provide multiple 16kbps data channels. The former

are therefore primarily circuit switched systems while the latter is more similar to

conventional computer networks. Indeed, as mentioned before, Globalstar does not even

intend on employing satellite cross-links, instead routing all traffic to regional ground-

stations and then relying on conventional land-lines to complete the circuit. This, in turn,

has probably motivated Globalstar's higher altitude (1400km vs. 700km), which results in a

larger satellite footprint, reducing the number of ground-stations required [Wis95].

The crosslink structures of Iridium and Teledesic, and the pattern of cells they lay down

on the surface, reflect the differences in emphasis in the two systems. The four crosslinks in

Iridium are partitioned into 1300 fixed channels, while Teledesic uses 8 crosslinks of

138Mbps each. While both constellations orbit at approximately the same altitude, the

much higher data rates envisioned by Teledesic require it to have an order of magnitude

more satellites than Iridium. Correspondingly, each satellite footprint in Teledesic is much
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smaller: 1400km vs. 4700km. Additionally, Teledesic will employ a much higher elevation

angle, 40 degrees vs. 10, to improve signal performance [Leo9l], [Tuc93].

2.6 Performance Studies

None of the systems mentioned above will be operational until at least 1998. Until then,

the only method we have for examining performance of these types of systems is computer

simulation. The authors of [TsC94] studied the performance of a hybrid LEO/GEO

network for circuit switched traffic. The LEO network was similar in dimension and

construction to Iridium, with the addition of three Geosynchronous satellites that were used

as alt-routes for overflow traffic. Each LEO satellite had 6 cross links to neighboring LEO

satellites, plus one link to the nearest GEO satellite. Routing was performed with traditional

DNHR style algorithms, with calls alt-routed through the GEO satellites if the proposed

LEO route exceeds a threshold hop-count, or if a LEO link in the path is saturated.

Residual capacity reservations were used on the crosslinks to improve stability. Results

indicated a blocking probability of less than .6 at a load of 1000 Erlangs. A measurable

improvement was found to exist from inclusion of GEO satellites to the network. The

improvement is highly dependent on the value chosen for the hopcount threshold though,

and would need to be dynamically tuned to assure optimal network performance. For the

Iridium-type system simulated, the ideal threshold was approximately 4 hops.

2.7 Summay

Current efforts at fielding global personal communication networks seem well underway,

with no significant technical obstacles remaining. However, while information regarding the

link access methods of each system has been relatively well documented, not much has been

officially published regarding the routing methods these systems intend to employ. The

problems of routing in an orbital environment are demonstrably more complex than an

earth-based system. While several authors have proposed tools to handle various parts of the

issue, very little comparison of the relative merits of each solution has been accomplished.

Until the commercial systems are fielded, we must fall back on simulated results for the

initial answers.
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3. METHODOLOGY

3.1 Introduction

As discussed in the previous chapter, very little information is available on the relative

merits of the various approaches to the orbital routing problem. To attempt to alleviate this

problem, this thesis provides a comparison of the performance of two different routing

protocols under various orbital and operational characteristics. This was done using

commercially available simulation tools as described in the remainder of this chapter.

3.2 Expetiment Design

3.2.1 Choice of Method. There are three primary methods of obtaining measures of

network performance. You can build the system in question and measure it in operation.

You can construct an analytic model and study the mathematical representation of the

system. Or you can build a simulation model and run experiments.

Simulation has been chosen for the following reasons: 1.) Though analytic modeling

provides a more accurate description of a network (if you can find a solution), the size of the

networks in this thesis makes analytic solution intractable. Kleinrock observes "When one

relaxes the Markovian assumption on arrivals and/or service times, then extreme complexity

in the interdeparture process arises ... " Even if we were to make the simplifying assumption

of Poisson arrivals and exponential service times, analytic solution for equilibrium of a

closed network of queues involves solving -1 simultaneous equations 2. Even for

the smallest proposed constellation (Globalstar with 48 nodes), solving the system for only

5 packets in the network requires solution of almost 2.6 x 106 equations [Kle75]. 2.)

Currently none of the proposed satellite systems are operational, making study of a physical

system impossible.

2 N is the number of nodes and K is the number of packets in the network.
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3.2.2 Choice of Protocols. Original plans called for a comparative performance analysis of

multiple orbital protocols. However, at the present time, there is surprisingly little

published about routing protocols to be used in these LEO systems. Darting was the only

published protocol asserted to be suitable for operation in satellite systems. Each of the

commercial systems discussed in the previous chapter plans on employing some sort of

proprietary protocol, and says little else. Accordingly, it was decided to use a

representative terrestrial protocol to gain a baseline against which Darting could be

compared. The terrestrial protocol selected is an extension to the venerable Bellman-Ford

protocol proposed by Cheng, et. al. [ChR89].

This Extended Bellman-Ford algorithm (exBF for short), fixes the counting-to-infinity

behavior and bouncing effect of the original Bellman-ford protocol. Originally used in the

early days of the Internet as the inter-gateway protocol, it was these two problems which led

to Bellman-Ford's replacement with more modem protocols. A comparison at the

University of Maryland [ShA92] showed that with Cheng's extensions, Extended Bellman-

Ford performs comparably with the newer systems. Therefore, due to relative simplicity and

universal familiarity of Bellman-Ford, this protocol was selected for the comparison.

Cheng solved the bouncing and counting-to-infinity problems by noting that those

effects were caused by routers advertising what he terms non-"simple" paths. By this, he

means one router telling a neighbor that it has a path to a destination when the path so

advertised goes through that neighbor. By adding an extra field to each entry in the routing

table, Cheng is able to detect these non-simple paths and modify router advertisements

accordingly. It should be noted that only the basic version of Cheng's extensions are

implemented for this thesis. The synchronization protocol enhancement also proposed by

Cheng which would eliminate short-term looping effects was not implemented.
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3.2.3 Simulation Construction. The network simulations in this thesis were built using two

packages, BONES Designer and SatLab, published by Cadence software. Designer is a

top-down block-oriented network simulation package and SatLab is a satellite

constellation simulation and optimization package. SatLab is used to communicate the

relative positioning and visibility information of each network node to Designer, and

comes with the Globalstar and Iridium constellations built in. The example satellite

communication system provided with Designer was modified and extended to fit the

needs of this thesis as described below.

Following the top-down approach, a copy of the top level schematic was made for each

routing protocol and modified as shown in Figure 1 and Figure 2. Text labeled with a "P" is

a simulation parameter set at runtime. Text labeled with an "M" is a memory variable, and

the text labeled with an "R" is a FIFO queuing structure. The values of the link-rate

parameters are taken from the proposal for the Iridium system [FCC91] and are 12.5
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Figure 1: Top level Extended Bellman-Ford schematic
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megabits per second for the earth to space links, and 25 megabits per second for the inter-

satellite links. Complete details on the parameter values and memory variable functions can

be found in Appendix A.

Simulation begins with the Init block in the lower left corner. It initializes some memory

variables and obtains the satellite positions from SatLab. Once this is done, the traffic

generators are pinged to begin transmitting. Simultaneously, the ground-station to satellite

cross-reference table is created, and the routing and analysis blocks are initialized.
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Figure 2: Top level Darting schematic

Data packets flow from the transmitters into a routing node, which is contained in a

satellite. The routing block looks at the destination of the data packet and determines the

appropriate next hop, updating the packet fields accordingly. The packet then passes into

the Update Hlistory block which maintains a fist of every node the packet has traversed. It

then passes to the EnRoute block, which examines the current and next nodes and delays
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the packet for a calculated amount of time to simulate queuing, transmission, and

propagation delays.

The simulation then checks to see if the packet has reached its destination. If it has, it

then passes to the analysis blocks, which calculate the performance statistics for the routing

protocol. If the packet has not reached its destination, it passes back to the routing routine

to begin another circuit. Complete details of the simulation sub-blocks can also be found in

Appendix A.

Two routing protocols, Extended Bellman-Ford and Darting were chosen for

simulation. Bellman-Ford was chosen due to its use in the early Internet, and because it is

representative of the Distance Vector class of routing algorithms. The version of Bellman-

Ford used here is an extension to the original protocol proposed by Cheng, et. al., and

eliminates the counting-to-infinity problem of the original [ChR89]. Darting was selected as

the second protocol because the authors assert its suitability for the LEO environment.

However, during verification of the simulation model, a weakness in the protocol was

encountered when attempting to handle the non-uniform traffic distribution of the network.

Some modifications were therefore made to the protocol to overcome this problem, and are

detailed in Appendix C.

These protocols were simulated on the Iridium and Globalstar constellations because

they are representative of the two main constellation families and were provided with the

SatLab simulation package as shown in Figure 4 and Figure 3. These figures also show the

initial state of the inter-satellite links chosen by the routing protocols. The Iridium

constellation has a periodicity of under 15 minutes. It was therefore decided to run each

simulation for a total of 960 seconds, with the first 60 seconds being discarded to allow

initial transients to die out. Satellite positional updates were arbitrarily set at one minute

intervals.
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3.3 Data Gathering

The parameters of interest for this thesis are packet traversal time, protocol convergence

rate, and protocol overhead. The simulation calculates these parameters for each satellite

update period, and several independent simulation runs are made for each configuration to

improve the confidence level in the results.

Packet traversal time was selected because the main benefit of LEO networks is the

ability to conduct "real time" (less than 400ms) transactions. Thus the impact of each

protocol on traversal time is of great interest.

Convergence rate was studied because it is a dominant factor in determining how

efficiently a protocol moves data through the network. Protocols that determine the optimal

paths faster have a significant edge in providing lower average traversal times in the dynamic

LEO environment.

As was mentioned in Chapter 2, conventional flooding algorithms achieve rapid

convergence rates through a high protocol overhead. Therefore the amount of overhead

load inflicted on the network by each protocol is of interest in determining how much of a

penalty is imposed by each algorithm in obtaining its convergence rates and traversal times.

The simulation measures packet traversal time by accumulating all calculated delays

encountered by a packet in one of the packet's fields. Each time the packet encounters a

queuing, transmission, processing, or propagation delay, the duration of the delay is added to

the delay field. When the packet reaches its destination, this value is recorded for later

analysis.

Similarly, overhead is measured by maintaining a packet length field, and accumulating

any additional overhead (if any) added by each node the packet passes through. When the

packet reaches its destination, the analysis blocks record the number of data bits and the

number of overhead bits contained in each packet. Packets that contain only routing update

information are counted as completely overhead.
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Convergence rate is determined by monitoring the network for the presence of routing

update packets. A sub-section of the update packet analysis block measures the time elapsed

between delivery of update packets to their destinations. A memory variable local to the

analysis section is used to accumulate these times. The convergence time for each protocol

is then taken to be the total elapsed time from the last satellite position update to the most

recent delivery of an update packet. In other words, each protocol is considered to have

converged when no more update packets are present in the network.3

3.4 OperalionalAssumplions

Several simplifying assumptions were made to allow a closer focus on the parameters of

interest in the project:

1. Communication links are error-free: Because we are primarily interested in the

routing (OSI level 3) performance of the systems, it was decided not to model error handling

and recovery on the links, as this task is primarily handled at levels 2 and 4. From a level 3

perspective, addition of a finite error probability on each link would only have the effect of

increasing the rate of traffic arrival. Since each of the systems was modeled with various

source traffic intensities, addition of error recovery traffic was deemed unnecessary.

2. Uniform source distribution: Complete uniformity for source distribution is assumed.

The commercial systems proposed address two purposes for operation. They propose to

provide global mobile communications, plus primary communication for underdeveloped

areas of the world (fill-in service.) We would expect most of the source traffic for the

mobile users to begin or end in one of the larger metropolitan areas, but that the traffic for

the fill-in service would have a more uniform distribution. Because it is uncertain at this

time which function will provide the majority of the traffic, and what percentage of the

mobile traffic will come from which areas of the globe, a uniform distribution is used here.

3 Note that while the absence of update packets from the network in itself does not guarantee that the protocol has
converged to an optimal solution; it is not the purpose of this thesis to evaluate the optimality of each protocol, but to
compare their relative performances. Any non-optimal solution will increase average traversal time, and thus penalize the
protocol in the final analysis.
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Due to memory limitations in the Sun workstations, these sources were limited to one per

globe octant (8 total).

3. Uniform destination distribution: While it is known [Cha89] that the probability of a

particular destination site decreases as the distance from the source increases, modeling

destination addresses with an exponential, rather than a uniform, distribution leads to

localized islands of activity in the network. Because it was desired to exercise as many of the

routing nodes as possible, a uniform distribution for destination addresses was also adopted.

4. Address binding is handled on a geographic basis as proposed by Shacham [Sha88].

Groundstation traffic is handled by the nearest network satellite. Actual address lookup at

call setup is assumed to be handled by higher level protocols and is therefore ignored in the

simulation.

5. Infinite buffers: Similarly to the assumption on error freedom, the addition of finite

buffers to the simulation would only lead to an increase in data traffic as sources re-send

rejected packets. Therefore, because the simulations were run at multiple loading levels

anyway, finite buffers would not have added anything to the comparison.

During operation of the simulation, topology update packets are given queue priority

over data packets. This choice increases the protocol convergence rate, which has the

benefit of reducing extra sojourn time due to outdated routing information.

Simulation of orbital mechanics is handled by the SatLab simulation tool. SatLab

handles orbital perturbations caused by the Earth's oblateness and other factors, as well as

relative node positioning and field of view. SatLab assumes two nodes are obscured if they

are separated by the surface or over 90 km of atmosphere [Sat95].
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3.5 Verification / Validation

3.5.1 Routing Algorithm Verification Each routing algorithm was constructed in a specialized

BDE 4 framework that mimicked the full simulation from the router's point of view. Each

protocol was verified against three small test constellations for which the optimal

spanning tree had been calculated by hand. After each satellite update period, the state of

the network was dumped and compared with the optimal solution.

Once each protocol had successfully passed the test constellations, it was placed into the

full simulation and run at a very low traffic intensity to verify that the protocol could operate

with the full compliment of network and would converge to a solution.

3.5.2 Designer BDE Verification Initial modifications to the Designer SATCOM example

system were carried out by Capt Doug Stenger [Ste96] for a parallel thesis effort; and first

level verification of the BDE was accomplished there. Further modifications were

enacted to accommodate the different source and destination setup in this thesis.

These further modifications were verified by single-stepping the simulation for each

packet type through all possible simulation sub-paths. At each step, the actual response of

the packet was verified against expectations and each packet delay verified against hand-

calculated values.

3.5.3 System Validation Because there are currently no LEO systems in operation,

validation consisted of attempting to keep as close as possible to the published system

proposals. When a choice was available, the corresponding data value from the Iridium

proposal [FCC91] was used. For instance, the satellite data rates, available crosslinks, and

multiple data access delay were all taken from that document. Other values, such as the

data packet size, were arbitrarily chosen based upon experience with reasonable network

values.

4 BDE stands for Block Diagram Editor, but here it is used to generically refer to the Designer simulation schematics that are

edited using the Block Diagram Editor.
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3.5.4 Summay Through the methods described above, a simulation of the LEO operating

environment was constructed for each routing protocol. Multiple simulations runs at

various loading levels and in different constellation families were executed to assess

protocol performance. The results of those simulations can be found in Chapter 4.
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4. RESULTS AND ANALYSIS

4.1 Accuracy

Any conclusions drawn from simulated data are only as good as that data. It is therefore

important to be reasonably certain that the statistics drawn from the data are representative

of the population. For this purpose, the method of determining confidence intervals with a

specified precision as discussed by Banks, et. al. [BaC96] was employed.

Rearranging Bank's equation to solve for the confidence interval half-length given a

fixed number of iterations, we obtain the following:

t S/2 <- (4.1)S

Here F is the precision to which it is wished to obtain the confidence for the statistic, R

is the number of independent replications, and S2 is the sample variance. From equation 4.1,

the maximum confidence of the data can be determined by integrating the density function

for the Student-t distribution with the appropriate degrees of freedom and calculating the

percentage area. The Student-t density function is:

][-(V~ 2(v +Y2

f(t) - 2 1+ -- (4.2)

Using numerical integration5, table 1 lists the confidence levels obtained from the data

for 1% accuracy on the mean. That is, the table indicates the relative certainty that the

sample mean is within 1% of the true population mean. The number in parenthesis is the

number of independent repetitions completed for that data. The Darting protocol shows

such high convergence variance that even with extra repetitions confidence is low. Also,

due to long simulation execution times, fewer iterations were completed at higher loads, and

5 Via Matlab's Quad8 function.
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the averaging of partial simulation runs of different lengths leads to somewhat artificially low

confidence values.

Table 1: Data Confidence

Constellation Protocol Statistic 1% Load 10% Load 20% Load

Globalstar Bellman-Ford Convergence 0.92 (3) 0.97 (3) 0.14 (2.5)

Delay 0.99 (3) 0.99 (3) 0.15 (2.5)

Overhead 0.96 (3) 0.99 (3) 0.49 (2.5)

Darting Convergence 0.17 (11) 0.16 (3) 0.04 (1.5)
Delay 1.00 (11) 0.83 (3) 0.19 (1.5)

Overhead 0.99 (11) 0.99 (3) 0.18 (1.5)

Iridium Bellman-Ford Convergence 0.96 (3) 0.56 (1.5) 0.46 (1.5)

Delay 0.98 (3) 0.98 (1.5) 0.81 (1.5)

Overhead 0.97 (3) 0.87 (1.5) 0.91 (1.5)

Darting Convergence 0.09 (11) 0.01 (1.5) 0.01 (1.5)
Delay 1.00 (11) 0.78 (1.5) 0.44 (1.5)

Overhead 0.94 (11) 0.14 (1.5) 0.01 (1.5)
(Load percentages are defined with respect to the Iridium ground to space maximum data rate of 12.5 Mbps [FCC91].)

4.2 Simulation Mechanics

As mentioned in the previous section, difficulty in simulation execution was encountered

at the higher loading levels. Indeed, it proved impossible to execute simulations within the

64 megabyte RAM constraints of the shared Sparc-20 workstations above a 20 percent load.

Post simulation analysis (i.e. hindsight) showed this to be caused primarily by a sub-optimal

packet design. (See Appendix A for details on the structure used.) The design was adapted

from the demonstration satellite communication system provided with the Designer

simulation package. It employed a shell-within-a-shell embedding structure the turned out

to greatly increase the overhead associated with packet book-keeping. Measurement using a

memory monitor showed about 16K per packet being used. With about 20 million packets

being generated per simulation run, and roughly 210 accesses per packet along a typical

route through the network, over 66 terabytes of information is being processed per run.

With 80ns RAM in the Sparc-20s, this yields a run-time surprisingly close to the 7 week

runtimes actually encountered. Additionally, output from Designer's profiling utility shows
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over 50% of CPU time involved with inserting, removing, and type-converting packet

information. While this excessive runtime led to some ragged run-lengths at the higher

loads, the overall trends for the data are clear and are detailed below.

4.3 Individual Protocol Data

4.3.1 Extended Bellman-Ford (Globalstar): Figure 5 and Figure 6 below show the packet

end-to-end delay characteristics of the Bellman-Ford Protocol over time. Discounting the
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Figure 5: Bellman-Ford Mean Delay in Globalstar

first 60 seconds, Bellman-Ford shows an average delay time of 0.1128 seconds at a 1%

load, 0.1147 seconds at 10%, and 0.1379 seconds at 20%. This is a 1.73% increase from

1% to 10%, and an 18.98% increase from 10% to 20%6. Maximum packet traversal delay

averages 0.1687, 0.1842, and 0.3157 seconds respectively, or a 9.07% increase from 1% to

6 Percentage changes are calculated by computing a delta for each pair of datapoints and calculating the percentage of the

base value that delta represents. The number quoted in the text is the mean of these percentages, and thus may deviate

slightly from the same calculation applied to the average numbers from the previous sentence. It is important to notice

that because the percentages reference different bases, the 1 -10% and 10-20% figures are not &irect comparable.
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10% and 69.56% from 10% to 20%. An interesting (and unexplained) feature of the

graphs is the instability in the 20% runs during the 900 second update period. While the

1% and 10% numbers also show a spike at this time, they quickly return to steady state.

This is not the case with the 20% runs, however. The rise in packet traversal time is

accompanied by a large growth in the queue size of satellite #21. However, because the

simulations require over 7 weeks to reach this point, extensive experimentation to

discover the cause was infeasible. The most likely culprit is the loss of routing

information packets in a transient loop that exceeded the maximum hop-count,

preventing network convergence, as the records show several packets removed from the

network at this point for that reason.

The increasing trend shown by the data is predominately caused by the increasing

distance of the satellites from each other with time.7 The slope of the increase reduces
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Figure 6: Bellman-Ford Maximum Delay in Globalstar

7 Examining one of the paths in the Iridium constellation shows an average delta of 152km per 60 second update period

between the groundstations and the uplink satellite, 80km between satellites in co-rotating planes, and 500km in counter-
rotating planes. Disregarding everything except the up and down-links, that's 2 links * 152km * lsec/3e8m = approx. 1
msec per update. This is of the same magnitude as the slopes seen in the graphs.
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around 600 seconds because one of the routes has reconfigured to a shorter link at that

point. Conversely, at around 800 seconds, a jump in the mean hop count indicates that one

of the links along the preferred route has become inactive and required use of a longer path.

Looking closely at the 10% mean delay data, it can be seen that delay within a satellite

update period is fairly constant, with very noticeable stepping between updates in the 300-

500 second range.

As the amount of traffic in the system increases, queuing delays begin to play a factor in

delay, as can be seen in the higher mean delay and variability in the 20% data. Individual

spikes corresponding to network re-configuration can be seen in the mean data at 422, 486,

and 546 seconds. Similar performance is seen in the maximum delay data.

Convergence time for Bellman-Ford in Globalstar is fairly constant across the entire

simulation, with peaks of activity at 420, 600, and 660 seconds due to several network links

re-configuring at those times (Figure 7). The first two data points are discarded as startup
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transients (the protocol takes several shortcuts during that period to diminish required

simulation time). The slope of the trend line is due to the increasing propagation time

mentioned above.

Apart from the general trends, convergence time averages 0.1609 seconds at 1% load,

0.1606 seconds at 10%, and 0.1605 seconds at 20%. This corresponds to a 0.19% change

from 1 to 10% and a 0.26% change from 10 to 20%.

Regarding overhead performance (Figure 8), the data shows no real surprises. Keeping

in mind the fixed packet header overhead required to transmit data (30.72, 153.6, and 307.2

Mbits), the overhead required to converge the constellation is constant with respect to

loading level and increases significantly only during times of increased convergence activity.

Specifically, overhead traffic accounts for 48.05% of total traffic at 1% load, 24.29% at 10%,

and 22.21% at 20%.

Overhead - GSexBF [ 5-Oct-1 996 15:50:55]
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Figure 8: Bellman-Ford Overhead in Globalstar
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4.3.2 Bellman-Ford (Iridium): Bellman-Ford's performance under Iridium is roughly

equivalent to Globalstar, obtaining slightly faster traversal time at the expense of

marginally higher overhead. This is most likely due to the shorter average link length

under Iridium due to its larger number of satellites. Under low loads, there is actually

more overhead traffic than data traffic traversing the network.

As shown in Figure 9 and Figure 10, data traversal times average 0.1003 seconds at 1%,

0.0970 seconds at 10%, and 0.1078 seconds at 20% (2.17% and 11.18% increases

respectively) and maximum observed delays averaged 0.2129 seconds at 1%, 0.1709 seconds

at 10%, and 0.2441 seconds at 20% (12.62% and 47.46% increases.) Spikes are visible at the

more active update times, with a transient routing table loop causing a large spike at 420

seconds.8

Mean Delay - IRexBF [3-Nov-1 996 7:31:00]
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Figure 9: Bellman-Ford Mean Delay in Iridium

8 Cheng has also proposed a more complex version of Extended Bellman-Ford which eliminates these transient loops.
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Max Delay - IRexBF [3-Nov-1 996 7:31:001
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Figure 10: Bellman-Ford Max Delay in Iridium

Convergence times for Iridium (Figure 11) show more variability than Globalstar due to

higher reconfiguration activity in Iridium (links begin to reconfigure at 180 seconds as

opposed to 420 seconds in Globalstar). The large increase at 420 seconds is due to the

packet spike mentioned above. Convergence times average 0.9894 seconds at 1%, 0.4389

Convergence - IRexBF [3-Nov-1 996 5:17:49 ]
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Figure 11: Bellman-Ford Convergence in Iridium
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seconds at 10% and 0.4233 seconds at 20% (3.26% and 5.20% increases.)

Overhead accounts for 77.05% of total traffic at 1% load, 35.79% at 10%, and 28.84%

at 20% load (see Figure 12).
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Figure 12: Bellman-Ford Overhead in Iridium

4.3.3 Daring (Globalstar): The delay results for Darting in Globalstar show visible spikes

at almost every positional update (Figure 13 and Figure 14). These are most likely caused

by surges of routing update packets as the network attempts to re-converge. Average

delay is 0.1132 seconds at 1% load, 0.1174 seconds at 10%, and 0.1319 seconds at 20%

(3.68% and 17.48% increases). Maximum packet delays averaged 0.2442, 0.2968, and

0.4280 seconds respectively (25.59% and 57.19% increases.)
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Mean Delay - GSDart [29-Sep-i 996 13:54:33]
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Figure 13: Darting Mean Delay in Globaistar

Max Delay - GSDart [29-Sep-i 996 13:54:33 ]
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In Figure 15, convergence time shows an inverse relationship to data rate. At the 1%

loading level, Darting does not have enough data traffic to embed routing updates in,

handicapping the convergence rate. At 10% and 20%, enough traffic has become available

to significantly reduce convergence times. Specifically, at 1% load, Darting takes 5.47

seconds to converge. At 10%, it takes 1.36 seconds, and at 20% it takes 1.86 seconds. This

corresponds to a 75.77% decrease from 1% to 10%, and 51.40% increase from 10% to 20%

load. (The higher number for 20% load is most likely due to those datapoints being results

from a single iteration, while the 10% numbers are the average of 3 iterations.)

Convergence - GSDart [28-Sep-1996 4:52:12 ]
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Figure 15: Darting Convergence Time in Globalstar

Darting overhead (Figure 16) also shows a strong dependency on the data rate,

occupying a relatively constant percentage of the traffic. Overhead occupies 46.08, 44.27,

and 44.13% of the total traffic at 1%, 10%, and 20% loads respectively.
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Overhead - GSDart [28-Sep-1996 4:52:12]
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Figure 16: Darting Overhead in Globalstar

4.3.4 Darting (Iridium): Like Bellman-Ford, under Iridium Darting also displays a slight

improvement in packet traversal times (Figure 17 and Figure 18). It has an average

traversal delay of 0.0978, 0.1116, and 0.10879 seconds (13.72% and 14.40% changes) and

an average maximum delay of 0.2645, 0.4179, and 0.3468 seconds (48.28% and 68.85%).

Convergence time (Figure 19) shows a drastic difference from Globalstar, with Darting

being unable to handle the extra satellites during the periods of highest activity. Because of

this, Darting averaged 12.29 seconds to converge at 1%, and failed to converge for some

iterations during the positional update at 600 seconds. At this time there was insufficient

data traffic for Darting to accommodate all the changes in the network. Darting averaged

7.99 seconds to converge at 10% and 1.067 seconds to converge at 20% load. (65.83% and

34.45% decreases.)

9 The decrease in the 20% numbers is due to incomplete data. The simulations did not reach peak activity times.
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Mean Delay - I RDart [23-Oct-i 996 10:22:40]1
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Figure 17: Darting Mean Delay in Iridiumn
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Figure 18: Darting Maximum Delay in Iridium.

38



Convergence- IRDart [ 19-Oct-1996 14:11:111
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Figure 19: Darting Convergence Time in Iridium

Overhead (Figure 20) shares similar trends with the results from Globalstar, with the

values showing a slight increase most likely due to the increased number of satellites.

Overhead traffic accounted for 48.87%, 46.86%, and 45.42% of total traffic at the 1%, 10%,

and 20% loads.

Overhead - IRDart [19-Oct-1996 14:11:11]
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Figure 20: Darting Overhead in Iridium
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4.4 Comparaive Peformance Results

4.4.1 Mean Traversal Delay Figure 21 and Figure 22 show close-ups of the mean delay

performance. There is almost no significant difference between the traversal delay

performance of the protocols on either constellation at any of the loading levels, except

Comparison: Mean Delay (Zoomed) - GS [ 8-Oct-I 996 6:39:50 ]
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Figure 21: Comparison - Globalstar Delay

immediately after the a satellite positional update. At those times, Darting shows delays

many times larger than those incurred by Bellman-Ford. In several cases, delays for

Darting exceed the real-time threshold of 400ms by 200-300%. Over most of the range,

Bellman-Ford enjoys fractionally better performance, most likely due to Darting's greater

overhead (see below). Specifically, on average Bellman-Ford is 0.72% faster at 1% load,

2.39% faster at 10%, and 13.00% faster at 20% in the Globalstar constellation. It is 1.74%

slower at 1%, and 7.56% and 3.074% faster at 10% and 20% in Iridium 0.

10 The slower performance of exBF at 1% is due to the packet spike at 420 seconds mentioned in the previous section.
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Comparison: Mean Delay (Zoomed)- IR [3-Nov-1996 7:31:00]
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Figure 22: Comparison - Iridium Delay

Regarding convergence (Figure 24 and Figure 23), Darting's reliance on data traffic to

piggy-back routing information makes it very sensitive to low data rates. At the loading

levels investigated, Bellman-Ford turned in consistently better performance. At the lowest

data rate, it was not uncommon for Darting to converge an order of magnitude slower than

Bellman-Ford. The disparity narrows considerably at higher data rates though, and most

likely becomes negligible at greater loads.

Under Globalstar, Bellman-Ford converged on average 3,582% faster than Darting at

1% load. It converged 764.4% and 1283% faster in the 10% and 20% cases. In Iridium,

Bellman-Ford turned in performances 2661%, 496.2%, and 339.7% better than Darting.
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Comparison: Convergence -GS [5-Oct-1 996 15:50:55]
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Comparison: Convergence - IR [3-Nov-1 996 5:17:491
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Figure 24: Comparison - Iridium Convergence
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While the performance of both protocols is roughly equivalent for steady-state at higher

data loads, Darting obtains this parity only at the expense of a much higher overhead (Figure

25 and Figure 26). In Globalstar, Darting has 149.1%, and 179.0% more overhead than

Bellman-Ford at the 10%, and 20% levels. Only at the 1% loading level did Darting show

better performance, having 15.38% less overhead. Under Iridium, Darting again has an edge

only at the 1% data rate. However, while Darting enjoys an average 70.30% decrease in

overhead from Bellman-Ford at 1%, at 10% and 20%, it incurs a 57.42% and 132.8%

increase in overhead.
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Figure 25: Comparison - Globalstar Overhead

Because Darting encodes link state information into every passing data packet, it is

extremely sensitive to the resolution of this parameter. In this thesis, link state was encoded

as a 32-bit integer corresponding to the inter-satellite distance 1 . Reducing this to a 16 bit

11 The Designer built-in integer size is 32 bits.
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Comparison: Overhead - IR [3-Nov-1996 5:17:49]
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Figure 26: Comparison - Iridium Overhead

integer would improve Darting's performance roughly by a factor of two, bringing it closer

to the Bellman-Ford numbers.

4.5 Summary

In almost every statistic measured, Extended Bellman-Ford had better performance than

Darting. Darting's greatest handicap was the correlation between overhead, traffic intensity

and path length. The requirement for each node to append its local environmental data to

every passing packet resulted in a much higher overhead and slightly longer traversal times.

Darting also showed much higher traversal delay instability at network positional

updates than Bellman-Ford. Again, this is most likely due to Darting's reliance on data-

triggered convergence. Because propagation is the predominate delay component at these

loading levels in the LEO environment, several packets from a burst may be forwarded

incorrectly before updated routing information arrives at the transmitting node.

Unfortunately, Darting will generate an update packet for evey incorrect packet that is
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transmitted, clogging up the reverse channel with unnecessary updates (which have queue

priority over data packets.)
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5. CONCLUSIONS

5.1 ProtocolApplicabilit to the Orbital Environment

Contrary to expectations, for the characteristics measured there is a clear advantage to

employing a distance vector routing protocol such as Extended Bellman-Ford over Darting

as traffic intensities increase. Darting is severely handicapped by the requirement to place

link data in each passing data packet. This results in overhead several times larger than

Bellman-Ford on the same constellation, eliminating the savings realized from Darting's

selective update mechanism. Massaging the frequency of update insertions and tweaking the

resolution of the link weight function would seem critical to obtaining good performance

from Darting. Better overhead results could have been obtained from Darting (at the

expense of convergence rate) by re-adjusting these parameters.

Mean packet traversal delay for each protocol was within a few percentage points

difference at all loading levels. However, neither protocol succeeded in keeping worst case

delays completely within the 400 millisecond real-time limit. Maximum delays on the order

of seconds were experienced by each protocol during some satellite positional update

periods. Some of this delay may be an artifact of having satellite updates occur

synchronously throughout the constellation. Allowing each satellite to initiate an update

cycle independently would spread the update load over a wider time interval.

5.2 Simulation Problems Encountered

These simulations juggle a huge amount of data. Instantaneous RAM' requirements

during peak update periods for some of the simulations are more than 300MB. The 10%

simulations take over a month of machine time to complete at top priority on a Sparc-20. If

forced to use virtual RAM, the simulations complete less than 1 millisecond of simulation

time per day.
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Unfortunately, during the time the simulations were in execution, the half-life of the

average Sparc station seemed to be about 2 weeks. Cumulatively, this caused the loss of

close to a machine-year of simulation time. The addition of the ability to check-point a

Designer simulation would have been invaluable. As it stands, further effort is needed to

optimize the simulations for memory use before trying to extend this work.

5.3 Recommendations for Future Work

Aside from streamlining the memory requirements of the simulation, there are several

theoretical aspects of the project that could be enhanced. First, the link formation

subroutine of the routing protocols is embarrassingly primitive. Currently, links are formed

with the closest 4 satellites, regardless of direction. Then those links are held until the

partner satellite travels out of range, even if a more optimal satellite becomes available.

Work should be done to form links at evenly spaced headings and optimal distances to yield

better paths through the network.

Second, a link-state protocol (such as OSPF) should be added to the comparison to

determine if any better performance can be provided by that class of algorithms. Also, the

protocols should be exercised at higher loading levels if memory requirements can be

lowered sufficiently to allow execution on the Sparc-20s.

Third, additional ground stations should be added. The single transmitter located in

each octant of the globe did not yield a completely uniform load on each node in the

network. Addition of more groundstations might yield smoother data. Again, this would

only be feasible if memory requirements of the simulation were lowered.

5.4 Conclusion

The overriding delay component at the loading levels investigated is the propagation

delay between nodes. Because there is usually only one optimal path to any destination,

protocol merit is determined by how quickly and efficiently an algorithm can determine the

components of that optimal path. In a satellite system, power is a critical resource. Thus
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protocol overhead is an important parameter to manage. Each unnecessary bit of overhead

is wasted transmission power. For the environments tested, Extended Bellman-Ford has a

significant advantage over Darting in this area. It obtains equal performance faster and with

a smaller overhead. More work needs to be done to optimize Darting before it should be

considered for use in LEO networks.
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APPENDIX A

Detailed Simulation Definition

A. 1 Designer BDE

As briefly touched upon in Chapter 3, a top-down approach was used to design the

simulation program files. This appendix will continue the discussion through all the

Designer sub-schematics. Other than the actual routing blocks and the top-level schematics,

all pieces of the simulation are identical for both protocols. The explanation will begin with

the top-level memory and parameter variables.12

Starting at the top left of Figure 27, the six temporal parameters are fairly self-
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Figure 27: Simulation Top Level Schematic

t2 Throughout this appendix, italicized references represent entities created for this project, while quoted references represent

Designer built-in constructs.
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explanatory and are used to set the starting time of the simulation. For this simulation, these

parameters were set at 0101:01 hours on 1/1/1998, due to the fact that Iridium is scheduled

to become operational sometime in 1998.

The memory variable Number of Nodes is calculated in the InitMem block. It is the sum of

the Number of Mobiles, Number of Satellites, and Number of Earthstations variables, which are

passed into the simulation from the SatLab program based upon which of the two

constellations is loaded. Distance Table Memoy, Elevation Table Memoy, Visibiliy Table Memoy,

and Mobile Latitude and Altitude Table Memoy are also passed into the simulation by SatLab

and reflect the current physical locations of the entities in the constellation. These variables

are used by the routing protocol to calculate Routing Table Memogy, which is a matrix of next-

hops for every possible source and destination in the network.

The next four variables, Interval Packet Counter, Confused Packet Counter, Rejected Packet

Counter, and Overhead Accumulator Memogy, collect various statistics used by the analysis

sections. Interval Packet Counter measures the total number of packets generated in the

network during each satellite update period (60 seconds), Confused Packet Counter

measures any packets that have exceeded the maximum number of hops (100), Rejected

Packet Counter records the number of packets discarded due to insufficient queue space,

and Overhead Accumulator Memory tallies the number of bits used for routing purposes

during the update interval.

Finally, the Ground-Sat Translation Vector is used by the groundstations to look up the

closest overhead satellite to use as a gateway into the network. It is calculated at the

beginning of each update period by the xfer block.

The second column of parameters are set at runtime and determine the operational

characteristics of the simulation. Mean Number of Pulses per Burst, Inter-Pulse Time, and Data

Bits per Packet are arbitrarily set at 10 pulses, 1 microsecond, and 1024 bits. Earth->Sat Data

Rate, Sat-> Earth Data Rate, and Sat-Sat Data Rate are set at 12.5 Mbps, 12.5 Mbps, and
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25Mbps, based upon the data rates specified in the Motorola FCC filing for Iridium

[FCC91]. From these, Mean Delay Between Bursts is calculated to provide an average data rate

from each groundstation of 1, 10, 20 percent of the ground-space data rate. Higher data

rates were infeasible due to RAM limitations on the Sun workstations, and the possibility of

reducing the number of traffic sources was discarded due to Darting's sensitivity to non-

uniform traffic distributions (See Appendix C.)

Node Position Update Time Delay holds the number of seconds between queries to SatLab

for satellite position updates. As mentioned in Chapter Three, this parameter is set at 60

seconds.

Traffic Start Delay is used in the Ping block to delay start of the traffic generators to allow

the initialization of the sub-blocks to complete. It is set at 1 second.

Maximum Hops is set at 100, and is used in the Update History block to remove any

packet from the network that has visited more than 100 nodes in an attempt to reach its

destination. Assuming an average packet in an optimal mesh network should have to travel

no more than half the diameter of the network to reach any destination, 100 hops is slightly

more than three times the radius of Iridium. Any packet that exceeds this limit is assumed

to be trapped in a routing loop and is removed from the network.

Maxinks is a parameter passed to the routing protocol to inform it of the maximum

number of adjacent satellites that it may communicate with. Following Motorola's proposal

for Iridium, this is set at 4 links.

A general overview of the operation of the top-level diagrams was included in Chapter

Three (page 17).
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The InitMem block (Figure 28) is used to query SatLab for the dimensions of the satellite

constellation currently loaded. A type 1 request is sent into the BSIM primitive 13, which

communicates with the SatLab program and retrieves the requested information. This is

then stored in the memory variables as mentioned previously

InitMem-Da [26-Aug-1996 10:14:10]
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Figure 28: SatLab Memory Initialization

In the Update Satellite Positions block (Figure 29), the incoming trigger is used to query

SatLab for the satellite positional information, and if any mobile users exist in the simulation,

for their positions also. Additionally, the trigger is stored in a delay block set to the length of

an update period as specified in the top-level diagram. The feedback loop around this delay

block generates a new trigger at intervals equal to the specified delay. This has the effect of

querying SatLab automatically at the end of every update period. These generated triggers

13 A Designer "primitive" is a block whose contents are direct machine code. There are no schematics associated with a

primitive.
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are also passed back up to the top level diagram to allow action by the other blocks at the

beginning of each new update period.

UPDATE POSITIONS-DA [26-A g-1996 10:14:101
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Figure 29: Update Satellite Positions Block

The purpose of the Ping block (Figure 30) is to allow only the first trigger of the

simulation run through to initialize the traffic generators. As mentioned previously, this

trigger is also delayed by a specified amount to allow the other blocks in the simulation to

complete initialization before data packets begin to be generated.
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Figure 30: Update trigger "Ping" throttle
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Xref (a sub-block in Figure 27) is a primitive block that calculates which satellite is

nearest to each groundstation and updates the translation vector accordingly. As a primitive,

there is no associated schematic for xref. Details of its implementation can be found in

Appendix B.

The function of the Read and Clear Counters block (Figure 31) is fairly self-explanatory.

Upon receiving the end-of-period trigger from Update Posifions, the value of each of the

specified memory variables is read and recorded for later analysis. Each variable is then reset

to begin counting anew for the next period.

Read&Clear Counters [26-Aug-1 996 10:14:101
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Figure 31: Read interval counters

Each of the eight groundstations in the simulation is represented by a Bursy Groundstation

block (Figure 32.) Each groundstation has an independent "Bursty Source" traffic

generator. This generator (slightly modified from a Designer built-in version) produces an

Sursty Groundstation [26-Aug-1996 10:14:10 ]
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Figure 32: Bursty Groundstation Transmitter Block
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exponentially distributed series of bursts, with individual burst sizes being geometrically

distributed.

At the beginning of each burst, the source and destination of the burst are determined

by the series of blocks along the bottom of the diagram. First, the node of the current node

is sent into the EIO (Execute in Order) block. From here, it is loaded into two temporary

local memories. After that, the value is passed to the "xlate" block, which is a built-in

Designer primitive that reads the translation vector element corresponding to the current

node. This produces the node number of a satellite, (or -1 if there is no satellite in range.)

The node number of the source satellite is then stored in yet another local memory. If this

groundstation does have a satellite in range, the number of groundstations is fed into a

uniform random number generator to determine the destination for the burst. The random

generator employed also takes an additional integer parameter that represents an illegal

number for the output. By feeding in the current node, we can assure that we never

generate a burst with the same source and destination.

Muliple Sources (Figure 33) holds an independent generator for each groundstation in the

simulation.

Multiple Sources [26-Aug-1 996 10:14:10]
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Figure 33: Transmnitter Instances
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Bursoy Earth Transmitters (Figure 34) encapsulates the data generation function of all

ground stations in the network. The incoming trigger signal initializes the multiple sources

to begin packet generation. Each generated packet's length is set to the number of data bits

specified in the corresponding parameter, plus 256 bits of overhead. (Eight header fields,

each a 32 bit integer.) The cost field (used by Darting) is set to zero, and the packet type is

set to one (signifying a new packet). Then a unique sequence number is added and the

interval packet counter is incremented.

Burty Earth Transmitteee-DA [ 26-Aug-1996 10:14:10 1
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Figure 34: Bursty Earth Transmitters

The next section of the schematic encapsulates the data packet into a "Satellite Routing"

data structure. This is a somewhat artificial construct introduced in the Designer satellite

communication example, and allows a single instance of the routing primitive to service all

satellites in the network. For reasons of compatibility with other concurrent thesis work,

this functionality was retained, though some data is duplicated in the underlying data

packets.

The fromnode field is set by the traffic generator to its node id, and this value is placed

into the Sat-Route packet for use by the transmitter block. A history list is generated and

placed, along with the current time and correct priority, into the routing packet. Lastly the
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calculated source satellite is placed in the current and next fields, and the data packet is

encapsulated into the finished routing shell. From here, it enters the Earth to Space

transmission block.

In the first stage of the Earth-Sat block (Figure 35), queuing at the outgoing buffer is

simulated. The node number of the source is read from the incoming packet and fed into

the dimensioned service block, which contains an independent queue for each node. A

processing delay is added at this point, normally distributed with a mean of 100

microseconds and a variance of 5 microseconds [CIJ89]. The packet is timestamped upon

entry and exit from the queue, and this information is used to update the accumulated delay

recorded in the delay field. Any packets rejected are counted by the respective memory

variable. The queue discipline is HFO, with incoming higher-priority packets displacing low

priority packets if the queue is full.
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Figure 35: Uplink Delay (Earth-Sat) Block

At this point, propagation and transmission delays are calculated, recorded, and applied

to the packet. First the index of the correct entry in the distance table is calculated based
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upon the number of satellites and groundstations currently in the network. The distance is

then used to calculate propagation delay, using a value of 2.97 x 108 for the speed of light.

Simultaneously, the length of the packet is read and combined with the appropriate data rate

to calculate the transmission delay. Additionally, an average TDMA access delay of 30ms is

encountered, based upon Iridium's 60ms TDMA frame [FCC91]. At this point, the packet

leaves the generation subsystem and appears on the top-level diagram.

Due to the fact that Bellman-Ford completely ignores packet data types, a kludge is

required in the exBF top-level before a new packet enters the routing system, as shown

below in Figure 36.

T2 [26-Aug-1996 10:12:18]
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Figure 36: Bellman-Ford PacketType Kludge

Upon entry into the Darling Router (Figure 37), the data packet is removed from the

routing shell. The shell then passes through a switch based upon the type of the data packet.

Type 1 and 2 packets are data packets and will be rejoined with the routing shell after being

passed through the Darting algorithm. Therefore the shells enter a simple HFO buffer to

DARTING Route Selec [ 26-Aug-199610:14:10 ]
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Figure 37: Darting Router
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await their data packets. Type 3 and 5 packets are routing update packets, that will also be

continuing along the network and thus must be rejoined with their shells. Type 4 packets

are packets that are in error, or have reached their destination, thus should be removed from

the network by the Destination Reached block. Thus, if a type 4 packet reaches the switch,

it is an error, and the appropriate counter is incremented. Once the data packet has been

updated with the correct next hop by the Darting algorithm and rejoined to its shell in the

Insert Data block, the Next field of the routing shell is updated with the next hop calculated

by Darting, and the re-combined packet exits the module.

Trigger pulses from the Update Posiions block are passed to the Darting algorithm so that

the network nodes may update their link topology tables as the satellites in the constellation

move.

In the event that Darting detects an inconsistency in the current network topology after

examining a data packet, it will generate additional routing update packets to correct the

nodes that are in error. The Darting module signals the Designer framework that it has

created an update packet by negating the packet length. Any packet that exits the Darting

module with a negative packet length must have a routing shell created before it can proceed

through the rest of the network. This is done in the Encapsulate Packet block, as shown

below (Figure 38).

Build Ne- Packet (26-Acq-1996 10:14:101
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Figure 38: Encapsulate Packet
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The Bellman-Ford routing schematic (Figure 39) is somewhat more complex due to the

fact that the algorithm itself had no knowledge of packet types. It expects to receive only

update packets, and never generates anything but update packets. Thus some additional

"software" is required to interface the algorithm with the rest of the simulation.

exBF Route Select [26-Aug-1996 10:12:18 1
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Figure 39: Extended Bellman-Ford router

As in Darting, the incoming data packet is removed from the routing shell and switched

according to its packet type. Data packets are sent immediately on, while update (type 3)

packets are sent into the router. Just as in Darting, outgoing update packets must have a

routing shell built for them before they continue.

Triggers from the Update Positions block are passed to the exBF algorithm also so it can

update its topology tables.

Because the exBF router never handles data packets itself, but only maintains a table of

next-hops, the correct value for the Next field in the routing shell must be read and inserted

in the shell before the packet leaves the router. If the current node knows of no path to the

destination (signified by a -1 in the next hop table), it increments the confused packet
counter and discards the packet.
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The main functions of the Update Packet History block (Figure 40) are to remove packets

that have exceeded the maximum hop count from the network, and to maintain the history

vector of a packet as it passes through the network.
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Figure 40: Update Packet History

The En~oute block's function (Figure 41) is solely to shuttle type 4 packets (which have

reached their destination) around the Sat-Sat queuing block. This prevents the packets from

picking up spurious delay by passing through the final link twice.
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Figure 41: EnRoute in Space

The Sat-Sat Delay block (Figure 43) is identical in function to the Earth-Sat delay block,

save a slight modification in the index calculation and the absence of TDMA delay.
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The fuinction of the Destination Reached block (Figure 42) is to check to see if a data

packet has reached the satellite above its destination. (Tfhus type 3 and 5 update packets are

passed immediately through.) It is also here, once the packet has passed through the

propagation delay in the Sat-Sat block, that the Current node field is updated to reflect the

packet's new position in the network.

DESTINATION REACHEDtItDe [26-Aug-1996 10:14:101
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appropriate analysis block for counting purposes; first passing through a downlink if the

packet is destined for the surface.

The Sat-Earth Delay block (Figure 44) is similar to the other two delay blocks, save for

the necessity to perform a translation vector lookup to determine the node number of the

groundstation currently being serviced by this satellite.
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Once a data packet reaches its destination, the delays and overheads associated with its

network traversal are recorded in the Data Packet Analysis block (Figure 45). Delay is

recorded directly by a Designer probe on the incoming routing shell's delay field (not

Data Packet Analysis [ 26-Aug-1 996 10:14:10 ]
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shown.) Overhead, however, is tallied on an update-by-update basis using accumulators that

are read and cleared by triggers from the Update Positions block. Overhead is calculated by

subtracting the number of databits in the packet from the total number of bits the packet

has accumulated on its trip through the network. The databits accumulator is simply

incremented by the number of bits in a packet every time a packet arrives.

Similar to the Data Packet Analysis block, the Update Packet Analysis block (Figure 46)

records the overhead imposed on the network by the update packets. In this case however,

it is somewhat easier as the entire packet constitutes overhead.
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Figure 46: Update Packet Analysis Block

Additionally, the block is responsible for keeping track of the amount of time required

for the routing protocol to converge. As was mentioned in Chapter 3, this is accomplished

by measuring and accumulating the amount of time between every delivered update packet,

based upon the premise that when there are no more update packets circulating the network,

the protocol has converged as far as it can. This accumulator is also read and cleared by a

trigger pulse from the Update Positions Block.
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A. 2 Packet Formiat

As alluded to in the preceding discussion, two different packet data structures are used in

the simulation. They are defined as follows:

Table 2: Sat Route w/ priority data structure
Field Data Type Range Default Inherited From

__________ __________ ____________ Value

Current INTEGER [0,+Infinity) ... Sat-Route DS [SatComndbs]
Next INTEGER [0,+Infinity) ... Sat-Route DS [Saom dbs]
Data Sat DS ... ... Sat-Route DS [SatCom-dbsj
Time stamp REAL [0,+Infinity) ... Sat-Route DS [SatComndbs]
BitflrrorRate REAL [0,+Infinity) 0.0 Sat-Route DS [SatComdbs]
EbN0 REAL [0+nnty) 0.0 Sat-Route DS [SatCom.dbs]
Delay REAL (-Infinity, +Infinity 0.0 Sat-Route DS [SatCom.dbs]

Hop Count INTEGER [0,+Infinity) 0
History INT-VECTOR ..._____ I___

Priorit INTEGER [0,+Infinity) 0 1 1_________

Table 3: Sat DS w/ payload Data Structure
Field Data Type Range Default Inherited From

Value
source INTEGER [0,+Infinity) ... Sat DS [SatComdbs]
destination INTEGER [0,+Infinity) ... Sat DS [SatCom dbs]
packet length INTEGER [0,+Infinity) ... Sat DS [SatCom dbs]
sequence INTEGER [0,+Infinity) ... Sat DS [SatCom-dbs]
number
PacketType INTEGER (-Infinity, +Infinity) 1
Cost INTEGER (-Infinity, +Infinity) 0 _________

from-node INTEGER (-Infinty, +Infinity) -1 _ ________

to-node INTEGER (-Infinity, +Infinity) -1 __________

Payload INT-VECTOR ... _____...__

sci list VECTOR _________
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APPENDIX B

Custom Designer Primitives

Several functions necessary for building the simulation could not be easily created with

the primitives provided in Designer. To alleviate this problem, it is possible to write custom

primitives in C++ to provide additional functionality to Designer. The primitives that were

created for this simulation were the two routing protocols, the cross-reference utility "xref",

and one vector support block. The details of these custom primitive blocks, along with their

C++ code, can be found below. The discussion assumes familiarity with C++.

Note that Designer automatically generates a C++ shell for custom primitives that

handles all the interfacing with the simulation engine. Thus, the portions of the programs

that are machine generated will not be displayed or discussed. For more details on those

portions, see the Designer Modeling Reference Guide [Alt94]

B. 1 Darling

The Darting algorithm is the easier of the two to understand, as it is an almost exact

implementation of the algorithm as detailed by Tsai and Ma FTsM95]. One extension to the

protocol had to be made to accommodate the granularity of the traffic sources in the

simulation. Details of the problem and the implemented solution can be found in Appendix

C.

The packet types of Darting are differentiated by a packet type field in each packet.

Type 1 packets are new data generated by one of the ground stations. Type 2 packets are

data packets that have already been processed through at least one node. Type 3 packets are

predecessor update packets as described in [-sM95]. Type 4 packets are packets that have

reached their destinations or are in error that need to be removed from the network and
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processed in the analysis blocks. Type 5 packets are "ping" packets that implement the

Darting extension mentioned above.

o External Ports:

Input:

SyncUpdate is of type TRIGGER: Description: Triggers bulk link cost updates using the
latest data from SatLab. The primitive will iterate through every node and generate
any necessary updates.

inbound update is of type Sat DS w/ payload: Description: Accepts input Sat DS w/
payload packets.

Output:

outboundLupdate is of type Sat DS w/ payload: Description: Outputs Sat DS w/ payload
packets with appropriate topology update messages based upon the input changes.
One input may result in many several output packets.

routematrix is of type INT-VECTOR: Description: Outputs a Satcomdbs style global
route table based upon any input changes. However, the primitive updates the
global memory directly, so this output is fairly useless, and is only included for
backward compatibility with Designer.

o External Arguments: (For details, see Appendix A.)

(M) "Routing table memory" is of type "INT-VECTOR"

(M) "Elevation Table Memory" is of type "REAL-VECTOR"

(M) "Distance table memory" is of type "REAL-VECTOR"

(M) "Number of Satellites" is of type "INTEGER"

(M) "Number of Mobiles" is of type "INTEGER"

(M) "Mobile Latitude Table Memory" is of type "REAL-VECTOR"

(M) "Mobile Altitude Table Memory" is of type "REAL-VECTOR"

(M) "Number of GroundStations" is of type "INTEGER"

(P) "MaxLinks" is of type "INTEGER"

o Internal Arguments: These arguments hold the local data of each router.

(M) "DummyList" is of type "LIST"

Initialization Value: Uninitialized

Description: Just included so Designer will include the Linked List header file
automatically.
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(M) "RouteDistance" is of type "REAL-VECTOR"

Description: Holds each node's estimated distance to each destination.

Initialization Value: Vector length: (1) Initial Value: 0.0

(M) "NodeMemory" is of type "VECTOR"

Description: Stores routing state from iteration to iteration.

Initialization Value: Vector length: (1) Initial Value: Uninitialized

(M) "OutputQueue" is of type "VECTOR"

Description: Holds packets awaiting output from each node.

Initialization Value: Vector length: (1) Initial Value: Uninitialized

(E) "NextPacket" is of type "EVENT-LIST"

Initialization Value: Uninitialized

Description: Used to schedule a simulation event to output packets from
OutputQueue.

(M) "Neighbors" is of type "INT-VECTOR"

Description: Holds the state of the network links.

Initialization Value: Vector length: (1) Initial Value: 0

* Module Name Darting
* Template Created By 3.0
* Author: rjanoso
* Last Modification Date: 29-Jul-1996 12:16:29
* Template Date: 29-Jul-1996 12:16:42

The first user-defined section of the Designer template holds global includes and defines

that apply throughout the class. In this instance, ADJLIST is a macro used simplify casting

later in the code. Because Darting does not specify how least-cost paths to a destination are

to be determined, I chose to implement a Dijkstra subroutine to fill that need. This specific

Dijkstra implementation [CoL90] uses an adjacency list format for the network graph. Each

network node has a vector of these lists, one for every other node in the network.

ADJLIST(X,Y) accesses node X's list of all the outgoing edges from node Y. LISTt and

VECTORt are built-in Designer classes for linked lists and arrays.

SATDIST is another macro used to abstract the index calculation into the vector of

distances passed into the simulation from SatLab. SatLab encodes each row of the distance
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table matrix into one long vector, beginnig with the groundstations. SATDIST returns this

to a matrix-type format, while automatically adjusting for extraneous groundstation data.

PACKETHEADERSIZE is used in packet length calculations, and is based upon eight

32-bit fields in the packet header.

/**Includes and Defines Below Here**/
#define ADJLIST(X,Y) ((LIST-t&) (((VECTOR-t&)Adjacency[X] )[Y))
#define SATDIST(X,Y) Distancetablememory[gstations* (gstations+nodes) +
X*(gstations+nodes)+(gstations+Y)]
#define PACKETHEADERSIZE 256

/**Includes and Defines Above Here**/

This section of the Designer Template is used to create global functions and variables

that can be referenced throughout the class. Detailed descriptions of the fu~nctions can be

found preceding the actual code.

/**Instance Definitions Below Here**/
void Ifito;
void Checklnit();
void update -inks();
void rt-update(int curr _node);
Void Return_-Ping();
void BuildInitialAdjLists();
void CheckDegenerate-Type3(int n-curr, mnt dest, mnt 0 via, mnt p cost);

inline void SyncLinks(int curr-node, mnt scln-a);
inline void SyncLink (mnt curr-node, mnt scln-a, mnt scio-b);
inline void Relax(int ncurr, mnt 0 from, mnt n-to);

jot FiodNode~int node, LIST-t& AdjList);

INTEGER t teinpint;
INTVECTOR t tempiv;
TRIGGER-t trig;

LIST-t OutList;
VECTORt local scl(l);
VECTOR-t Adjacency(l);
VECTOR-t EmptyAdj;
SatDSwdpayload -t *TempPacket;
INTVECTOR -t RouteMatrix,outvect, Vi, payload;
REALVECTOR-t DistMatrix;

double simtime;
jot gstations, seqnum, outindex;
jot nodes;
mnt MAXLINKS;
jot *neighbor;
jot **NeighMatrix;
mnt **RDist;
jot **Pred;
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const float MAXDIST = 1000000000.0; //Satlab uses ten billion for infinity, thus
le+9 is safe.

int initflag;
/**** Instance Definitions Above Here ****/

The next section can be used to initialize the global variables:

/**** User Constructor Code Below Here ****/
initflag = -1;
outindex = 1;
/**** User Constructor Code Above Here ****/

The bulk of the working code appears in this section:

/**** User Code Below Here ****/

Init is a special function included in the Designer template that is called once for each

primitive during instantiation. Here I use it to set up the event scheduling for output

packets.

void Darting: :Init()

EVENTLISTht Temp = NextPacket;
Temp. Extend (NextPacketEntry ();
SetNextPacket (Temp);

Checklnit is another initialization function that I included to do dynamic arrays based

upon the size of the constellation being simulated. Because the size of the constellation is

unknown until it is read from SatLab, this setup cannot be done at instantiation. Neighbor is

used to extract the local neighboring nodes from NeighMatlix, which holds the link

information for the whole network. RDist holds the least cost distances from the current

node to all other destinations, and Pred is the predecessor matrix associated with those

distances. Adjaceny is a matrix14 of linked lists, which holds each node's view of the network

14 Actually, a vector of vectors.
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for use by the Dijkstra algorithm, while local-sci holds each node's locally detected status

changed links.

void Darting: :Checklnit() //Initialize global variables if needed

mnt i,k;
if (initflag == -1)

initfiag = 0;

neighbor = new int[MAXLTNKS];
if (neighbor == 0) [carr << "Out of Memory!";)

bleighMatrix = new int*[nodes];
if (NeighMatrix == 0) 1 cerr << "Out of Memory!";)
for (i0O;i<nodes;i++) f
NeighMatrix[i] = new int[MAXLINKS];
if (NeighMatrix[i] == 0) (cerr << "Out of Memory!";)
for(k=0;k<MAXLINKS;k++) NeighMatrix[i] [k] = -1;
)//for i

RDist = new int*[nodes];
if (RDist == 0) [cerr << "Out of Memory!";)
for (i=0;i<nodes;i++) [

RDist[i] = new int~nodes];
if (RDist(i] == 0) (cerr << "Out of Memory!";)
for(k=O;k<nodes;k++) RDist~i][k] = -1;
1//for i

Pred =new int*[nodes];
if (Pred == 0) (cerr << "Out of Memory!";)
for (i=0;i<nodes;i++) [

Pred[i] = new int[nodes];
if (Pred[i] == 0) [cerr << "Out of Memory!";)
for(k=O;k<MA.XLINKS;k++) Pred[i][k] =-1;
1//for i

LISTt AdjList;
VECTORt AdjVect(nodes,AdjList);
EmptyAdj = AdjVect;
Adjacency. ChangeLength (nodes);
for (i0O;i<nodes;i++) Adjacency[i] = AdjVect;

DistMatrix.ChangeLength(nodes*nodes, MAXDIST);
RouteMatrix. ChangeLength (nodes *nodes, -1);
tempiv.ChangeLength(l, -1);
local-scl .ChangeLengthVECTORDefaultValue (nodes, tempiv);
local-scl [0]=tempiv;

)//if initfiag
1//Checklnit

The FindNode function determines if the specified destination node is an immediate

neighbor to the current node. If the requested destination is adjacent to us, it returns the

index into the adjacency list of the link information. If not, it returns -1. The Designer

linked lists are prioritized lists, and the node number of the destination is encoded as the

priority of the list element. Thus, each linked list is always kept sorted by node number,
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simplifying the search problem. The actual data kept in the fist is the cost associated with

traversing the link.

//Function to find the desired node in an Adjacency List. Returns -1 if node is not in
list.
int Darting::FindNode(int node, LIST-t& AdjList)

int i=O;
unsigned int priority=O;
double time-entered;
for (i=0;i<AdjList.Length();i++) (
AdjList.GetElm(i,priority,time entered);
if (priority == node) return(i);

)//for i
return(-l);

]//FindNode

Each node in the network has an entry in its adjacency tables for every other node. This

reflects the current node's view of the network. However, because each ink is bi-

directional, it is actually entered as two entries in the adjacency "matrix". The following

functions make sure that if we change the information for one direction of the link, the

reverse direction is also updated.

//Synchronizes link b->a with link a->b.
//If a->b does not exist, and b->a does, b->a will be deleted.
//If a->b exists and b->a doesn't, b->a will be created.
//Otherwise the value of b->a will be made equal to a->b.
inline void Darting::SyncLink(int curr node, int scln-a, int scln-b)

LIST-t& Adj-a = ADJLIST(curr nodescln-a);
LIST-t& Adjb = ADJLIST(currnode,sclnb);
LISTt::QueueOrderings FIFO = (LIST-t::QueueOrderings)O;
int x=O,y=O;

x=FindNode(sclnb,Adja);
y=FindNode(sclna,Adj b);

if (x -1 && y -1) delete(Adj-b.Remove(y));
if (x = -1 && y == -1) Adj-b.Enqueue(Adja[x],FIFO,scln-a);
if (x -1 && y 1= -1) Adjb[y] = Adj-a[x];

]//SyncLink

//Syncs all possible links at the specified node, except updates
// to our local links are not allowed. (Protocol can get confused.)
inline void Darting::SyncLinks(int curr node, int scln-a)

int i;
unsigned int n;
double etime;
for (i=0;i<nodes;i++)

if (i != curr-node) SyncLink(curr-node, scln-a, i);
LISTht& my-adj = ADJLIST(curr node,curr-node);
for (i=0;i<my-adj.Lengtho);i++) C
myadj.GetElm(i,n,etime);
SyncLink(curr-node,currnode,n);

1//for i
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The Update-Links routine is called when the trigger input from the SatLab update is

received. It then scans the new distance matrix and determines if any of our current

neighbors have gone out of range. It then finds the x closest satellites, where x is equal to

the simulation parameter Maxlinks. If any of these closest satellites also has a free slot, a link

is formed between the two satellites. To alert the rest of the routing algorithm that this is a

new link, the ordinal number of the new neighbor is increased modulo the number of

satellites in the network. (That is, nodes+ 1 is added to the value.)

//Function to update the link connections after a Satlab update.
//Does all nodes at once, i,dtable,htable, and neighbors are undefined
//at this point.
//Modifies Neighbors: Leaves entry intact if link is still up, changes
// to -1 if link has gone down, adds new links to free channnels if
// available. New nodes are flagged by being offset by nodes+l. (See
// below)
void Darting::update-links()

// NeighMatrix = Neighbors;
int i,j,k; //loop counters
int x,y; //scratch variables
float a;

for (i=0;i<nodes; i++) (
//Deactivate any links who have gone out of range
for (j=0;j<MAXLINKS;j++) [

if (NeighMatrix[i][j] != -1)
a = SATDIST(i,(NeighMatrix[i][j]));
if (a >= MAXDIST) [

x=NeighMatrix[i][j];

// Find our link to Neighbor x and remove it
y=FindNode(x,ADJLIST(i,i));

//Find our record of Neighbor x's link to us and remove it
if (y != -1) delete(ADJLIST(i,i).Remove(y));
y=FindNode(i,ADJLIST(i,x));
if (y != -1) delete(ADJLIST(i,x).Remove(y));

NeighMatrix[i][j] = -1; //Flag the link as down
1//if a>= MAXDIST

1//if N!=-l
1//for i

1//for i

for (i=O;i<nodes; i++) [
//Recover this node's working environment
for (j=O;j<MAXLINKS;j++) neighbor[j] = NeighMatrix[i][j];

//Find closest neighbors, incuding current neighbors
int best[nodes],tempi;
float bdist[nodes],tempf;
float mind = MAXDIST;
for (j=0;j<nodes;j++) fbest[j]=-l; bdist[j]=MAXDIST;l
for (j=O;j<nodes;j++) (
a = SATDIST(i,j);
if (a<mind && a>l.0) t
x=j;
for (k=0;k<nodes;k++)
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if (a<bdist[k])
tempf = bdist~k]; bdist~k] =a; a =tempf;
tempi = best~k]; best[k] =x; x =tempi;
I //if
mind = a;

1//for j
//best[] and bdist[] should now have closest nodes in order

//Delete any candidates that are already neighbors and re-pack list
for (j0O;j<nodes;j++)

for (kO; k<MAXLINKS; k++)
if (best[jI == neighbor[k] 11 best[j]+nodes+l == neighbor~k])

besttj] = -1;
X=0; y=l;
do(

if (best[x] != -1) (x++; y++;)
else

if (y < nodes && besttyl != -1)
tempt = bdistfx]; bdistfx] hdist~y]; bdist[y] = tempf;

tempi = best[x]; best~x] = best[y]; best[y] =tempi;

x++; y++;
Ielse
y++;
1//if best[y] != -1

)//if best (x]! -1
Iwhile (x < nodes && y < nodes);

//Try to fill unused links
mnt flag = 0;
x = 0;
if (best[x] != -1) for (j=0;j<MAXLINKS;J++)f

if (neighbor[j] == -1)
flag =0;

while (x < nodes && best[x] != -1 && flag ==0)
for (y=0;y<MAXLINKS;y++) [ //see if candidate has open link

if (NeighMatrix[best[x]][yJ == -1) t
//add nodes+l to flag this as a new entry

neighbor[j] = best[x]±nodes+l;
NeighMatrix[best[x]]I[y] = i+nodes+l;
flag = 1;

y=MAXLINKS; //stop the for loop
1// if free slot

//for y in candidate's links

)//while
J// if n~jl=-l

1//for j

//Put back changes
for (j=0;j'ZMAXLINKS;j++) Neighl~atrix~i] Ij] =neighbor[j];

)//f or i
1//function update-links

One of the assumptions that the Darting protocol makes is that all satellites start

operation with a knowledge of the topology of the network. To accommodate that, the

following function, called during the first network update, uses global network data to

determine the initial adjacency lists.

//Function BuildlInitial-Adj Lists
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//Darting assumes all nodes know the initial topology of all links
I/when the network is started.
void Darting::BuildInitial-AdjLiStS()

mnt i,j,k;
mnt neigh;
LIST -t::QueueOrderings FIFO =(LISTht: :QueueOrderings)O;
for (i=O;i<nodes;i++) [

for (j=O;j<nodes;j++)
for (k0O;k<MAXLINKS;k++)t

//At start, all entries from Update Links should be flagged as new
neigh = Neighl~atrixtj][k]-nodes-1;
if (neigh > -1)[
teinpint = (INTEGER-t) (SATDIST(j ,neigh));
ADJLIST(i,j) .Enqueue(tempint,FIFO, neigh);
W/if

)//for k
)//for j

)//for i
]//Build initial lists

The following functions perform the processing necessary to determine the least cost

paths to each network node. The actual implementation here is a form of Dijkstra adapted

from [CoL9O].

//Function Relax - routine from CH25 of the Algorithms book.
inline void Darting: :Relax(int n-curr, mnt n from, mnt nto)

mnt u,v,w; //variables from text
u = nfrom;
v = nto;
w = (int&)ADJLIST(ni.curr,u) [PindNode(v,ADJLIST(n curr,u))];
if (RDist~ncurrlfv] > RDist[ncurr][u] + w)
RDist[ncurr] [v] =RDist[n curr] [u] + w;
Pred~n-curri [v] u;

1//Relax

//Function to do routing updates
//Implements the Dijkstra routine from [CSCE586????]
void Darting: :rt-update(int curr-node)

LIST t Q;
mnt i,j,listlength,u;
unsigned mnt v;
double t;
LIST-t::QueueOrderings fifo =(LIST t: :QueueOrderings)O;

//Initialize-Single-Source(G, 5)
for (i0O;i<nodes;i++)
RDist[curr node] [i] (int)MAXDIST;
Pred[curr-node][i] =-1;

)//f or i
RDist[curr node] [currnode] 0;

//Q<-V[G]
for (i=0;i<nodes;i±+) [tempint = i
Q.Enqueue(tempint, fifo,RDist~curr node] [i]);)

while (Q.Length()>0)

//u<- Extract-Mm (Q)

tempint=(INTEGERt&)Q[Q.Length( -1]; u=tempint;
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delete(Q.Remove(Q.Length()-l));

//for each vertex v E Adj[u]
listlength = ADJLIST(curr-node,u).Length();
for(i=O;i<listlength;i++)(
// Get v (remember, node number is encoded as the priority)

ADJLIST(currnode,u).GetElm(i,v,t);
Relax(curr node,u,v);

//Update node v's distance entry in Q
for (j=0;j<Q.Length();j++) [if ((INTEGER t&)Q[j]==v) break;)
if (j < Q.Length()) f

delete(Q.Remove(j));
tempint = v;Q.Enqueue(tempint,fifo,RDist[currnode][v]);

1//if j<length

1//for i : v E Adj[u]

)//while
)//function rt-update

The following functions implement the ping packet extension to Darting that was

necessary for correct operation of the protocol under our traffic generation distribution.

Details of this problem, and its solution can be found in Appendix C.

//This routine attempts to determine if we're in a situation where the
//incoming type 3 packet does not contain enough information to resolve
//the problem. To do that, it checks to see if our new calculated cost
//to the destination is the same as the cost passed to us in the update
//packet. If it is different then we've encountered a degenerate case
//where we've lost contact with what used to be an active path. To
//solve that, we'll generate a ping packet to retrieve information from
//as far down the defunct path aswe can get.
void Darting::CheckDegenerateType3(int ncurr, int dest, int nvia, int p-cost)

int mypath[nodes], bad-node, pktlen;
int x=0, y=O, k=0; //scratch variables
LISTt::QueueOrderings FIFO (LISTt::QueueOrderings)O;

//Determine "optimal" path from local data
int nexthop = -1;
int Cmin = 0;
int Cant = 0;
int j = dest;
while (j != n-curr) [
Cant = Cmin;
mypath[x++] = next-hop = j;
j = Pred[ncurr][j];
if (j -1) (y = FindNode(next9hop, ADJLIST(n-curr,j));]
else ty = -1;1
if (y == -1) [
j=n-curr;
next hop = -i;

)else[
Cmin += (INTEGER t&)ADJLIST(n curr,j)[y];

)//if y=-l
1//while

x--; //back index up

if (next-hop == -1) return; //No path to destination,
//can't do anything else.

if (Cant == p-cost) return; //Costs match, we should be OK now.

//If we get here, costs don't match, so we have a problem.
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//Need to see where our "optimal" path differs from the path
I/sent to us in the update packet, and ping the nodes in
//discrepancy.
mnt p =x
VECTOR-t& payload =(*TempPacket)->scl-list;
while (p > 0)1

LIST -t& scl-list = (LIST t&)payload~mypath[p]];
if (SCljliSt.Length() == 0) ( I/We've got a winner.
bad-node = mypath[p];
SatDSwdpayload -t *Outpacket;
OutPacket = new (SatDSwdpayload-t);
pktlen = (*OutPacket)->packetlength = -PACKETHEADERSIZE;

//Negative pktlen signals new pkt.

(*OutPacket)->Cost = Cmin;
(*OutPacket)->PacketType = 5; //Ping packet
(*OutPacket)->source = (*OutPacket)->fromnode = ncurr;
(*OutPacket) ->destination = bad node;
(*OutPacket)->to node = nvia;

LIST-t EmptyList;
VECTOR -t& outload = (*OutPacket)->scljlist;
outload.ChangeLengthVECTORoefaultValue(nodes, EmptyList);
(*Outpacket) ->sequencenumber = (*TempPacket) ->sequencenumber;

I/Put our SCL data in
LISTt& my scl = (LIST t&)payload~n. curr];
x = ADJLIST(n _curr, ncurr) .Length();
if (X != 0) [
pktlen += x*32;
unsigned mnt node=0;
double time entered;
INTEGERt cost;
for (k0O;k<x;k++)

cost =(INTEGER t&)AOJLIST(n ~curr, n curr) .GetElm(k, node, time entered);
my-scl.Enqueue(cost,FIFO, node);

)//for k
)//if x

OutList. Enqueue (*OutPacket);
delete (OutPacket);
NextPacket -Entry(). Schedule (O,trig);
I/break; I/Exit while loop

)//if scl-length==0
P__

1//while p
I //CheckoDegen

//This function turns the ping packet around when it has reached
//it's destination and returns it to the sender. The packet type
//is negated to distinguish it from a new ping.
void Darting::Return.Ping (

mnt x,j,k;
mnt source = (*TemnpPacket)->Source;
mnt n -from = (*TempPacket)->from -node;
mnt n -curr = (*TempPacket)->to node;
mnt pktlen = (*TempPacket)->packetlength;
VECTOR-t& payload = (*TempPacket)->scl-list;
LIST-t::QueueOrderings F'IFO = (LIST-t: :QueueOrderings)0;

(*TempPacket)->source =(*TempPacket)->from node = n_curr;
(*TempPacket) ->destination =source;
(*TempPacket)->to-node = n-from;
(*TempPacket)->PacketType = -5;

//Put our SCL data in
LISTIUt& my-scl = (LIS I-t)payload[n-curr];
x = my-SCI.Length();
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if (x > 0) [
pktlen -= x*32;
for (j=0;j<x;j++) delete(my scl.Dequeue());

W/if

x = ADJLIST(ncurr,n-curr).Length();
if (x != 0) (
pktlen += x*32;
unsigned int node=0;
double time-entered;
INTEGER t cost;
for (k=O;k<x;k++) {
cost = (INTEGER-t&)ADJLIST(n-curr,n-curr) .GetElm(k,node,time_entered);
my-scl.Enqueue(cost,FIFO,node);

)//for k
)//if x

OutList. Enqueue(*TempPacket);
delete(TempPacket);
NextPacketEntry().Schedule(O,trig);

}//ReturnPing

// Run Functions:
// The interface for these functions is generated automatically by
// Designer when the primitive is created. The user then fills in the
// functionality.

The SyncUpdateRun function handles all the necessary processing when a trigger is

received by the router on the port that indicated that the satellites have moved. After calling

the update_links function, and doing some additional processing on the first iteration, it

updates the nodes' adjacency tables and returns.

inline void Darting::SyncUpdateRun(const TRIGGER t& SyncUpdate)

LIST t::QueueOrderings FIFO = (LISTht::QueueOrderings)0;

gstations = NumberofGroundStations;
nodes = NumberofSatellites;
MAXLINKS MaxLinks;

int i,j; // loop counters
int y; // scratch variables
simtime = TNow); seqnum = 1;

Checklnit(); //See if we need to set up the matricies

//Process updates for all nodes
updatejlinks();
if (simtime==O) BuildInitialAdjLists();

//Update each node's adjacency lists
for (i=0;i<nodes;i++) [

//Recover this node's working environment
for (j=0;j<MAXLINKS;j++) neighbor[j] = NeighMatrix[i][j];

//Process link updates---------------------------------------------

for (j=0; j<MAXLINKS; j++) (
if (neighbor[j] == -1) [; //Link down
//update-links should take care of managing the adjacency lists
I//if lost link
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if (neighbor[j] < nodes~l && neighbor[j] > -1) [//Link cost change
tempint = (INTEGER-t) (SATDIST(i,neighbor[j 1));
y=FindNode(neighbor[j] ,ADJLIST(i, i));
ADJLIST(i,i) [y]=tempint;
y=FindNode(i,ADJLIST(i,neighborlj 1));
ADJLIST(i,neighbor~j1) [y] = tempint;
)//if old link

if (neighbor[j] > nodes) [//New neighbor
neighbor[j] = neighbor~j]-nodes-l; // un-flag node

//For first iteration, new links are added in
//Build -Initial.AdjLiStS

if (simtime > 0) [
tempint = (INTEGER -t) (SATDIST(i,neighbor[j]));
ADJLIST(i, i) .Enqueue(tempint,FIFO, neighbor~j]);
ADJLIST(i, neighbor~j] ).Enqueue(tempint,FIFO, i);

)//if simtime > 0
)/fnew link

1//for j in MAXLINKS //-----------------------------------------

rtupdate(i); //Update the routing tables for this node

I/Re-pack node's environment back into the global variables
for (j=0;j-124AXLINKS;j++) NeighMatrix[i][j] = neighbortj];

I //for all nodes (i)

I/Output old-style Satcom matrix
mnt nexthop;
for (i=0;i<nodes;i++)

Pred[i] [i] = i; //Make next hop to ourself be ourself
for (j=';j<nodes;j++) [
nexthop = Pred[i][j];
if (nexthop 1=-1) while (Predli][nexthopl != i) nexthop = Pred[i][nexthopl;
if (nexthop ==i) nexthop = j; //Correct for immediate neighbors
RouteMatrix[i*nodes+jI = nexthop;
)//for j

1//for i
SetRoutingtablememory (RouteMatrix);

Inbound-UpdateRun. is called every time a packet is passed to the routing algorithm

during normal network operations. It checks the packet type and forwards it to its

destination if it is a data packet. Update packets are handled as described in [TsM95] with

B=1. Ping packets are handled as described in Appendix C.

inline void Darting::inbound update Run(const SatDgwdpayload-t& inbound-update)

RouteMatrix = Routingtablememory;
gstations = NumberofGroundStations;
nodes = Numberof Satellites;
MAXLINKS = MaxLinks;
LISTt: :QueueOrderings FIFO = (LISTt: :QueueOrderings)0;

TempPacket = (SatDSwdpayload-t*) inbound-update. CopyArc (;

mnt n-from, n-Curr, p-COst, pkttype, pktlen, update-flag;
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int i,j,k,x,y; // loop counters, etc
simtime = TNOW();

int g = (*TempPacket)->Sequencenumber;

mnt d dstn = (*TempPacket)->destination;
mnt s srce = (*TempPacket)->source;
pkttype =(*TempPacket) ->PacketType;
pktlen =(*TempPacket) ->packetlength;

//If noone has reset the packetlength, we need to take care of it.
if (pktlen < 0) [pktlen = -pktlen; (*TempPacket)->packetlength = pktlen;]

//Kludge for Ping packets, we'll put it back later
if (pkttype == 5 11 pkttype == -5) pkttype = 2;

if (pkttype > 3 11 d-dstn >= nodes 11 (*TempPacket)->source >= nodes)
//Drop any unknown type or type 4 packets that make it back here
delete (TempPacket);
return;

VECTOR-t& payload = (*TempPacket) ->scl list;

//Fill in routing overhead fields for new packets
if (pkttype == 1) [

(*TempPacket)->Cost = 0;
LIST -t EmptyList;
payload.ChangeLengthVECTORoefaultValue(nodes, EmptyList);
(*TempPacket) ->from node = (*TempPaCket)->source;
(*TempPacket) ->to node = (*TempPacket) ->source;
(*TempPacket) ->sequencenumber = seqnum++;

n_from = (*TempPacket)->froml~node;
n_curr = (*TempPacket) ->to node;
p-cost = (*TempPacket)->Cost;
if ((*TempPacket)->source == (*TempPacket)->destination)
//Sending data to ourself, drop the packet
(*TempPacket)->PacketType = 4;
OutList. Enqueue (*TemnpPacket);
delete (TempPacket);
NextPacketEntry().Schedule(0,trig);
return;

//Step 0 - Go through steps 3-5 with i=0 if this is a new message

I/Step 1 - Incorperate p-status into local cost mat ix
update-flag =0;

if (pkttype !=1)

for (j=0;j<nodes;j++)
LIST -t& scl-list = (LIST -t&)payload[j];
if (j != n-curr && scljlist.Length() > 0)
if (scl-list == ADJLIST(n-curr,j)) I
I/do nothing
)else(

update-flag = 1;
x = ADJLIST(ncurr,j).Length();

for (k0O;k<x;k±+) delete (ADJLIST(n-curr,j) .Dequeue());
x = scl-list.Length();

unsigned mnt node=0;
double time-entered;
INTEGER t cost;
for (k0O;k~x;k++)
cost = (INTEGER -t&)scl-list.GetElm(k,node, timeentered);

ADJLIST(n-curr, j) .Enqueue(cost, FIFO, node);
1//for k

SyncLinks(ncurr,j);
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)//if scl-list==ADJLIST
1/i S list.Length>0

1//for j
if (update-flag ==1) rtupdate(n-curr);
J// if not new packet

if (pkttype == 3) CheckoDegenerate-Type3 (n-curr, 5 srce, n-rom, p-cost);

//Handle Ping packets
pkttype = (*TempPacket)->PacketType; //Restore correct value
if (pkttype == 5 && (*TexnpPacket) ->to-node == (*TempPacket)->destination)
Return-Pingo(;
return;

1//ping packet

//Step 2 - If this is the destination, give data to user and stop
if ((*TempPacket)->destination == ncurr)

(*TempPacket)->PacketType = 4;
OutList. Enqueue( *TempPacket);
delete (TempPacket);
NextPacketEntry().Schedule(0,trig);
return;

//Recover this node's working environment
for (j=0;j'<MAXLINKS;j++) neighbor[j] = lNeighMatrix[n--curr] [ji;
int link =-I;
for (k=0;k<M1AXLINKS;k±+) [ //What link is source on?

if (neighbortk] == njfrom) link=k;
)//for k

//Step 3 - Determine optimal path
mnt next -hop = -1;
mnt Cmin = 0;
mnt Cant =0;
if (pkttype != 3)
j = d-dstn;
while (j !=ncurr)

Cant =Cmin;
next-hop = j
j = Pred[n-curr][j];
if (j -1) ty = FindNode(next hop, ADJLIST(n-curr,j));I
else ty = -1;]
if (y ==-1)
j =n-curr;
next hop = -1;

)else(
Cmin += (INTEGER t&)ADJLIST(n curr, j) [y];

W/if y=-l
)//while

]//if not control packet

//Step 4 - Assemble outgong data message
if (pkttype !=3 && next -hop !=-1)

(*TempPacket) ->from-node = ncurr;
(*TempPacket)->to-node = next-hop;
(*TempPacket)->Cost =Cant;
if (pkttype == 1) (*TempPacket)->PacketType =2;
LISTt& scljlist = (LIST-t&)payload[n-curr];
x = sci -list.Length();
if (x > 0) [
pktien - x*32;

for (j=0;j<x;j++) delete(scl-list.Dequeueo));
1/if

x = ADJLIST(n-curr,n-curr) .Length();
pktien += x*32;
unsigned mnt node=0;
double time-entered;
INTEGER-t cost;
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for (k0O;k<x;k±+)
cost = (INTEGER t&)ADJLIST( n.curr, n Curr) .GetElm(k, node, time entered);
scllist. Enqueue(cost, FIBO, node);
1//for k

(*TempPacket) ->packetlength = pktlen;

//Step 5 - Transmit packet to next node
OutList. Enqueue( *TempPacket);
delete(TempPacket);
NextPacket.Entry().Schedule(O,trig);

jelsef //No path to destination, or control packet, drop the packet.
(*TempPacket)->PacketType = 4;
OutList. Enqueue (*TempPacket);
delete (TempPacket);
NextPacket..Entry(1. Schedule (0,trig);
return;

)//if pkttype !=3 && nexthop != 1

//Step 6 -Check if predecessor update required
if (Cmin p-cost && (pkttype == 2 11 pkttype == 5))(

TempPacket = (SatDSwdpayload-t*) inbound-update. CopyArc o;
VECTOR-t& payload = (*TempPacket)->scl-list;
(*TempPacket)->Cost = Cmin;
(*TemfpPacket)->PacketType = 3;
(*TempPacket)->source = ddstn;
(*TempPacket) ->from ~node = n -curr;
(*TempPacket)->destination = (*TempPacket)->to node = n-from;
(*TempPacket) ->sequencenumber = - (*TempPacket) ->sequencenumber;
pktlen = PACKETHEADERSIZE;

for (k=0;k<nodes;k±+) [
LIST -t& scl-list = (LIST -t&)payload[k];
x = scl-jist.Length();
if (x > 0) for (j=0;j<x;j++) delete(scl-list.Dequeue());
)//f or k

j=d-dstn;
while (j != n..curr)
LISTht& scl-list =(LISTht&)payload[j];
x = ADJLIST(n..curr,j).Length();
pktlen += x*32;
unsigned mnt node=0;
double time-entered;
INTEGERt cost;
for (k=0;k<x;k++)

Cost = (INTEGER -t&)ADJLIST(n-curr, j) .GetElm(k, node, time..entered);
SCl-liSt.Enqueue(cost, FIFO, node);
)//for k

j = Pred[ncurr][j];
if (j == -1) ( //if j=-l then there is no path to the destination

j = n..curr; //exit from the loop
1// ifj

)//while
//Put our SCL data in
x = ADJLIST(n-curr,n-curr) .Length();
if (x != 0) [
pktlen += x*'32;
LIST -t& scl-list = (LIST t&)payload[n-curr];
unsigned mnt node=0;
double time-entered;
INTEGERt cost;
for (k0O;k<x;k+±)

cost = (INTEGER-t&)ADJLIST(n-curr, n-curr) .GetElm(k, node,time-entered);
scl-list.Enqueue(cost,FIFO,node);
1//for k

)//if x

//Negative packetlength signals new packet to external handlers
(*TempPacket)->packetlength = -abs(pktlen);
OutList. Enqueue( *TempPacket);
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delete(TempPacket);
NextPacket-Entry().Schedule(0,trig);

1//if not initial packet or control packet, and predecessor update is required

//Re-pack node's environment back into the global variables
for (j=0;j<MAXLINKS;j++) NeighMatrix[ncurr][j] = neighbor[j];

//Output old-style Satcom matrix
int nexthop;
Pred[n-curr][n-curr] = ncurr; //Make next hop to ourself be ourself
for (j=0;j<nodes;j++) f

nexthop = Pred[ncurr][j];
if (nexthop 1= -1) while (Pred[n curr][nexthop] n-curr) nexthop =

Pred[ncurr] [nexthop];
//Correct for immediate neighbors
if (nexthop == n_curr) nexthop = j;
RouteMatrix[n-curr*nodes+j] = nexthop;
)//for j

SetRoutingtablememory(RouteMatrix);

// Asynchronous Functions:

This NextPacketRun outputs any packets in the output queue. When each packet is

enqueued, a trigger is placed on the event list that activates this function.

inline void Darting::NextPacketRun(const TRIGGER-t& NextPacket)

SatDSwdpayload t *OutPacket;
int i = OutList.Length();
if (i>0) [
OutPacket = (SatDSwdpayload-t *)OutList.Dequeue();
outbound-update(*OutPacket);
delete(OutPacket);
)//if i>l

/**** User Code Above Here ****/

B.2 Extended Bellman Ford

Much of the interfacing code for Bellman Ford is identical to the Darting code, with the

exception that Bellman Ford does not need access to the actual data packets in the network.

It therefore has no conception of packet types. Any packet it receives is considered to be an

update packet, and any packet it transmits is likewise an update packet.

The algorithm itself is adapted from Cheng, et. al [ChR89]. The portions of the code

that are identical to Darting are presented with minimal, if any, additional description.
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o External Ports:

Input:

SyncUpdate is of type TRIGGER: Description: Triggers bulk link cost updates using the
latest data from SatLab. The primitive will iterate through every node and generate
any necessary updates.

inbound update is of type Sat DS w/ payload: Description: Accepts input Sat DS w/
payload in which the payload is an asynchronous input vector used to accept routing
update messages from the network. Each "element" of the vector is a triple, (j, Dkj,
Hkj). Therefore, the first three numbers in the vector correspond to the first
"element", numbers 4-6 correspond to the second element, etc. The C++ code
expects the numbers to be formatted in this manner.

Output:

outbound-update is of type Sat DS w/ payload: Description: Outputs Sat DS w/ payload
packets with appropriate topology update messages based upon the input changes.
One input may result in many output packets.

routematrix is of type INT-VECTOR: Description: Outputs a Satcomdbs style global
route table based upon any input changes. Seeing whereas the primitive will update
the global memory anyway, though, this output is fairly useless, and is only included
for backward compatibility with Designer.

o External Arguments:

(M) "Routing table memory" is of type "INT-VECTOR"

(M) "Elevation Table Memory" is of type "REAL-VECTOR"

(M) "Distance table memory" is of type "REAL-VECTOR"

(M) "Number of Satellites" is of type "INTEGER"

(M) "Number of Mobiles" is of type "INTEGER"

(M) "Mobile Latitude Table Memory" is of type "REAL-VECTOR"

(M) "Mobile Altitude Table Memory" is of type "REAL-VECTOR"

(M) "Number of GroundStations" is of type "INTEGER"

(P) "MaxLinks" is of type "INTEGER"

o Internal Arguments:

(M) "RouteDistance" is of type "REAL-VECTOR"

Description: Holds each node's estimated distance to each destination.

Initialization Value: Vector length: (1) Initial Value: 0.0

(M) "NodeMemory" is of type "VECTOR"
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Description: Stores routing state from iteration to iteration.

Initialization Value: Vector length: (1) Initial Value: Uninitialized

(M) "OutputQueue" is of type "VECTOR"

Description: Holds packets awaiting output from each node.

Initialization Value: Vector length: (1) Initial Value: Uninitialized

(E) "NextPacket" is of type "EVENT-LIST"

Initialization Value: Uninitialized

Description: Used to schedule a simulation event to output packets from
OutputQueue.

(M) "Neighbors" is of type "INT-VECTOR"

Description: Holds the state of the network links.

Initialization Value: Vector length: (1) Initial Value: 0

* Module Name exBF
* Template Created By : 3.0
* Author: rjanoso
* Last Modification Date: 30-Jul-1996 17:16:36
* Template Date: 30-Jul-1996 17:16:46
*/

/*** Includes and Defines Below Here ****/
#include <LIST. hh>
#define SATDIST(X,Y) Distancetablememory[gstations*(gstations+nodes) +
X* (gstations+nodes )+ (gstations+Y)]
#define PACKETHEADERSIZE 256
/**** Includes and Defines Above Here ****/

The data structures used by Cheng have been divided into two matrices: dtable, which

holds the distances to each node in the network through each of the outgoing links, and

htable, which holds the header (predecessor) node for each destination along the path out the

respective ink. The routes matrix holds the optimal paths determined by the algorithm for

each node. Each entry is a triple, consisting of outgoing ink, total distance, and

header(predecessor) node along the path.

/**** Instance Definitions Below Here ****/

void Init();
int in-path(int n-from, int lvia, int n-to);
int dtable min(int row);
void rt-update(int currnode);
void routeall();
void update-links ();

INTVECTOR-t tempiv;
TRIGGER t trig;

VECTOR-t nodemem;
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LISTt OutList;
SatDSwdpayloadt *TempPacket;
INTVECTOR-t RouteMatrix, NeighMatrix, Vi, payload;
REALVECTORt RDist;

double simtime, iter time;
int gstations,seqnum;
int nodes;
int MAXLINKS;
int **htable;
int **routes;
float **dtable;
int *neighbor;
const float MAXDIST = 1000000000.0;

int initflag;
/**** Instance Definitions Above Here ****/

/**** User Constructor Code Below Here ****/
initflag -1;
iter_time = 1000000;
DEBUGTIME = 1000000;
/**** User Constructor Code Above Here ****/

/**** User Code Below Here ****/

void exBF::Init()

EVENTLISTt Temp = NextPacket;
Temp.Extend(NextPacketEntry));
SetNextPacket(Temp);

The in.path function is used by Cheng's algorithm to determine if the optimal path to a

specified node goes out the indicated link.

//Function to determine if my path to n to goes out through lvia
// n_'s are node numbers, l's are indexed into the neighbor/htable columns.
int exBF::in-path(int n from, int lvia, int nto)

int h;
if (noto > nodes i nto < 0 II lvia < 0 II 1_via > MAXLINKS) return 0;
//routes[][2] is the head node along our best path to n to.
h = routes[nto] [2];
if (h < 0 i h > nodes) return 0;
if (h == nfrom) return 0;
if (h == neighbor[l-via]) return 1;
else return in-path(n-from,l-via,h);

1//function inpath

Dtable_min is used by the routing algorithm when determining what outgoing ink has

the shortest destination to the desired destination.

//Function to determine the minimum entry in a dtable row
//returns an integer index to the minimum entry
int exBF::dtable-min(int row)

int x; //Loop Counters
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int minnode = -1;
float mindist = MAXDIST;
for (x=0;x<MAXLINKS;x++) [

if (dtable[row][xl < (int)mindist)
minnode = x;
mindist = dtable[row][x];
1//if

1//for
return(minnode);

1//function dtable_min

Rt update performs the actual routing function. Operation is as described by Cheng in

[ChR89]. This basically consists of checking each row in dtable and recording the link with

the smallest entry as the preferred output link for packets to that destination. The notable

exception to this is that no source node will advertise a path to a neighbor when that

neighbor lies along the path to the destination node. This prevents several nasty looping

effects present in the original Bellman-Ford algorithm.

//Function to do routing updates
// Selects perferred neighbors from minimum of dtable entries for that
// node's row as long as each node along the path to the desination has
// it's shortest path also passing through the candidate neighbor.
// -- Destroys routes, outvect
void exBF::rt-update(int curr-node)

//Initialize variables:
const int UNMARKED = -1;
const int UNDETERMINED = MAXLINKS+2;
float mind;
int flagl=O,flag2=0,flag3=O;
int b,c,p,x,mincol; //Loop Counters, misc indicies
int path[nodes+l]; //holds reconstructed paths from htable
for (x=0;x<nodes;x++) [routes[x] [0] = UNMARKED;

routes[x][1] = (int)MAXDIST;
routes[x][2] = UNMARKED;]

//Fix up the entry to ourself
routes[curr node] [0] = MAXLINKS+l; //No outgoing link to ourself
routes[currnode] [1] = 0; //Zero cost to transmit
routes[curr node] [2] = UNMARKED; //path to ourself has no header

//Re-calculate routing data for each node:
for (x=0;x<nodes;x++) [

b = dtable min(x);
if (b == -1 I dtable[x][b] == (int)MAXDIST)
//Noone we know of has a path to that node node
if (x curr node) routes[x][0] = UNDETERMINED;

] else

//Reconstruct path from htable entries
p = -1; c = x; flagl = flag2 = flag3 = 0;

if (c != curr node) do [
c = htable[c][b];
if (c 1= -1) [

path[++p] = c;

mincol = dtable min(c); //Returns -1 if no path
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if (mincol == -1) [mind = MAXDIST;)
else [mind = dtable[c][mincol];)

flagl = (dtable[c][b] > mind && c != curr node);
flag2 = (htable[c][b] == curr-node);
flag3 = (routes[c][0] 1= UNMARKED);

]else(

flagl = (1 > 0); //Set flagl true

)//if c 1= -1

while (!flagl && !flag2 && !flag3);

if (flagl 1I routes[c][0] == UNDETERMINED)
routes[x][0] = UNDETERMINED;
routes[x][1] = (int)MAXDIST;

1 else [
routes[x][0] = b; //Preferred Neighbor
routes[x][1] = (int)dtable[x][b]; //Distance to x via b
routes[x] [2] = htable[x][b]; //Head of path to x via b
1//if

)//if path exists

1//for x (all nodes)

//Store the updated tables in the output vector
Vi.ChangeLength(nodes*3,-1);
for (x=0;x<nodes;x++) t
Vi[x*3+0] = x; //node #
Vi[x*3+l] = routes[x][1]; //distance to node
Vi[x*3+2] = routes[x][2]; //head node of path
)//for x

1//function rt-update

Due to the huge number of update packets that exBF generated when required to

converge to a global topology from a completely blank slate at network startup, routeall

was added to cheat and synchronize all nodes with global information during the first

iteration. This modification saves several hours of simulation time, and as the first 60

seconds of simulation data are thrown out anyway, does not affect the comparison at all.

//Function to synchronize all routing tables to global info
// Uses the Dijkstra algorithm from Darting.
void exBF::route all()

LIST-t Q;
LISTt::QueueOrderings FIFO = (LISTht::QueueOrderings)0;
INTEGER-t int t;
int i,j,u,v,w,curr-node;
int **Pred, **RDist;

nodemem = NodeMemory;
Neighatrix = Neighbors;

Pred = new int*[nodes];
if (Pred == 0) [cerr << "Out of Memory!";1
for (i=0;i<nodes;i++) (

Pred[i] = new int[nodes];

88



if (Pred[i] == 0) [cerr << "Out of Memory!";]
)//for i

R~ist = new int*[nodes];
if (RfliSt == 0) [cerr << "Out of Memory!";1
for (i=O;i<nodes;i++) f

RDiSt[ij = new intinodes];
if (Rflist[i] == 0) [cerr << "Out of Memory!";)
1//for i

//F'irst build global tables
for (curr _node=O; curr-node<nodes; curr-node++) j

/Imit Single Source Graph(G,S)
for (i0O;i<nodes;i++) [
RDiSt[currnode] [i] =(int)MAXDIST;

Pred[curr-node][i] -1;
)//for i

RDiSt[curr-node] [curr node] 0;
Pred~curr node] [curr-node] =curr-node;

//Q<-v [G]
for (i0O;i<nodes;i++)[
int. t = i
Q.Enqueue(intt,FIFO,RDist[currnode] [i]);]

while (Q.Length()>0)

//u<-Extract--Min (Q)

delete(Q.Remove(Q.Length( -1));

//for each vertex V E Adj[u]
for (i0O;i<MAXLINKS;i++) [
v= NeighMatrix[u*MAXLINKS+i];
if (v > nodes) [v = v-nodes-l; NeighMatrix[u*MAXLINKS+i] =v;]

if (v != -1)

//Relax(u,v,w);
w = (int)SATDIST(u,v);
if (Roist[currnode][v] > RDist[curr--node] [u] + w)
RDist[curr node] [v] =RDist[curr-node] [u] + w;
Pred~curr node] [v] u;

//Update node v's distance entry in Q
for (J=0;j<Q.Length();j++) [if ((INTEGER-t&)Q[j]==v) break;]
if (j < Q.Lengthl)) [
delete(Q.Remove(j));

int__t = v;Q.Enqueue(intt,FIFO,RDist[currnodel Iv]);
)//if j<length

1//if v != -l

1//for each vertex V E Adi (u]

)//while

1//for curr_node

//Now fill in each node's local memory with the global info
for (curr node=O; curr node<nodes; currnode++)(
INTVECTOR-t& iv = (INTVECTOR-t&)nodemem~curr node];
mnt n,d-cn;

for (i 0;i<MAXLINKS;i++)
n = Neighmatrix[currnode*MAXLINKS+i];
if (n > nodes)I
n = n-nodes-l;
Neighl~atrix[curr-node*MAXLINKS+i] = n;)I

if (n !=-1) f

d cn =SATDIST(currnode,n);
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//Set up tables for in-path
int link = -1;
for (j=O;j<MAXLINKS;j++)

neighbor[j] = NeighMatrix[n*MAXLINKS+i 1;
if (neighbortj] == currnode) link = j
1// for j

if (link == -1)
printf("Error, no reciprocal link while cheating! currnode=%i,

nn"curr node, n);
TerminateSifl()

for (j0O;j<nodes;j++) routes[j][2] = Pred~n][j];

//Now fill in dtable and htable.
//Note: nodememfj,i] = dtable~j](i]
//and nodemem[j+nodes,i] =htable[j][i]

for (j=O;j<nodeS;j++) (
if (in-path(n,link,j))

iv[j*MAXLINKS+i] = (INTEGER -t)((int)MAXDIST);
iv[nodes*MAXLINKS + j*MAXLINKS+i] = (INTEGER-t)(-l);
I elsef
iv[j*MAXLINKS+i] = (IN EGERt)(RDi~t[n] [ji + dcnl;
if (iv[j*MAXLTNKS+iI > (int)MAXDIST)

iv[j*MAXLINKS+i] = (int)MAXDIST;
iv[nodes*MAXLINKS + j*MAXLINKS+i] = (INTEGER-t)Pred~n] [j];

)//if in-path
1//for j = destination node

//Never go out a link to get to ourself
iv[currnode*MAXLINKS+i] = (int)MAXDIST;

//head node to neighbors is ourself
iv[nodes*MAXLINKS + n*MAXLINKS+iI (INTEGER-t)curr-node;

1//if n!= -1
1//for i = via link

1//for curr node

SetNodeMemory (nodemem);
SetNeighbors (NeighMatrix);

//Delete the dynamically allocated memory
for (i=O;i<nodes;i++)

delete[] RDist[i];
delete[] Pred~i];

V/
I //route-all

//Function to update the link connections after a Satlab update.

/Does all nodes at once, i,dtable,htable, and neighbors are undefined

/at this point. Modifies Neighbors: Leaves entry intact if link is

/still up, changes to -1 if link has gone down, adds new links to free

/channnels if available. New nodes are flagged by being of fset by

//nodes+l.
void exBF: :update-links()

NeighMatrix = Neighbors;
mnt i,j,k; //loop counters
mnt x,y; //scratch variables
float a;

for (i0O;i<nodes; i++)
//Deactivate any links who have gone out of range
for (j0O;j<MAXLINKS;j++) f

if (NeighMatrix[i*MAXLINKS+j] != -1)

a = SATDIST(i,Neigh~atrix[i*MAXLINKS+j]);
if (a >= NAXDIST) Neigh~atrix[i*MAXLINKS+j] = -1;
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]//for j
)//for i

for (i=O;i<nodes; i++)
//Recover this node's working environment
for (j=O; j<MAXLIN{S; j+±) neighbor[j] = NeighMatrixli*MAXLTNKS+j 1;

//Find closest maxlinks neighbors, incuding current neighbors
mnt best[nodes] ,tempi;
float bdist[nodes] ,tempf;
float mind = l4AXDIST;
for (j0O;j<nodes;j++) [bestlj]=-l; bdist~j]=MAXDIST;l
for (j=O;j<nodes;j++)
a = SATDIST(i,j);
if (a<mind && a>1.0)

Xj;
for (k0O;k<nodes;k++)

if (a<bdist[k]) [
tempf = bdist~k]; bdist[k] =a; a = tempf;
tempi = best~k]; best~k] x; x = tempi;
)//if
mind = a;

1//for j
/-- best[] and bdist[] should now have closest nodes

//Delete any candidates that are already neighbors and re-pack list
for (j=0;j<nodes;j±+)

for (k0O;k<MAXLINKS;k++)
if (best[j] == neighbortk] 11 best[j]+nodes+l == neighbor[k])
best~j] = -1;

x0O; y=l;

do(
if (best[x] ! -1) (xc++; y++;l
elsef

if (y < nodes && best[y] != -1)
tempf = bdist[x]; bdist~x] =bdist(y]; bdist[y] = tempf;

tempi = best~x]; best~x] = best[y]; best~y] tempi;
X++; y++;

Ielse

)//if best[y) != -1
I//if best[x] != -1

Iwhile (x < nodes && y < nodes);

//Try to fill unused links
int flag 0;
x =0;
if (best[x] != -1) for (j0O;j<MAXLINKS;j++)

if (neighbor~j] = 1
flag = 0;

while (x < nodes && best[x] != -1 && flag ==0)

for (y=0;y<MAXLINKS;y++) [ //see if candidate has open link
if (Neighlatrix~best[x]*MAXLINKS~y] == -1)

neighbor[j] = bestfx]+nodes+l;
NeighMatrix [best [x] *MXLINKS+y] = i+nodes+l;
flag = 1;

y=MAXLINKS; //stop the for loop
J// if free slot

J// for y in candidate's links

1//while
)// if n[jI=-l

)//for j

//Put back changes
for (j=0;j<MAXLINKS;j++) Neighl~atrix[i*MAXLINKS+j] =neighbor[j];
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)//for i
SetNeighbors (NeighMatrix);

)//function update-links

//Run Functions:

SyncUpdatejRun differs slightly from Darting in that it must create update packets to

begin the convergence iteration. It cycles through each node, updates its out going links,

and informs its neighbors of any relevant changes.

inline void eXBF::SyncUpdate-Run(const TRIGGER-t& SyncUpdate)

nodemem = NodeMemory;
RouteMatrix = Routingtablememory;
NeighMatrix = Neighbors;
RDiSt = RouteDistance;

gstations = NumberofGroundStations;
nodes = NumberofSatellites;
MAXLINKS = MaxLinks;

mnt i,j,k; // loop counters

simtime = TNow(); seqnun = 1;

//Initialize global variables if needed
if (initflag == -1) [
htable = new int*[nodes];
if (htable == 0) [cerr << "Out of Memory!";)
for (i0;i<nodes;i++)(

btable~i] = new int[MAXLINKS];
if (htablefi] == 0) Icerr << 'Out of Memory!";]
1//for i

dtable = new float*[nodes];
if (dtable == 0) [cerr << "Out of Memory!";]
for (i0O;i<nodes;i++) [

dtable~i] = new float[MAXLTNKS];
if (dtable[i] == 0) [cerr << "Out of Memory!";)
1//for i

routes = new int*(nodes];
if (routes == 0) fcerr << "Out of Memory!";]
for (i0;i<nodes;i++) I

routes~i] = new int[3];
if (routes[i] == 0) tcerr << "Out of Memory!";]
)//for i

neighbor = new int[MAXLINKS];
if (neighbor == 0] (cerr << "Out of Memory!";]

initflag = 0;
)//if initfiag

if (Rist.Length() == 1) Roist.ChangeLength(nodes*nodes, MAXDIST);
if (RouteMatrix.Length()= 1) RouteMatrix. ChangeLength(nodes*nodes, -1);
if (NeighMatrix.Length()o 1)

NeighMatrixfOl =-1

NeighMatrix. ChangeLength(nodes*MAXLINKS, -1);
SetNeighbors (NeighMatrix);
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if (nodemem.Length()= 1)
nodemem. ChangeLength (nodes);
tempiv.ChangeLength( 2*nodes*MAXLINKS, (int)MAXDIST);
tempiv[O] = (int)MAXDIST;
for (j=nodes*MAXLINKS; j<2*nodes*MAXLINKS;j++) ternpiv[j] =-1;

for (j=O;j<nodes;j++) nodemem~j] = tempiv;
SetNodeMemory (nodemem);

//Process updates for all nodes
update -inks();
if (simtime ==0) [route -all(); nodemem = NodeMemory;1
NeighMatrix =Neighbors;

for (i=O;i<nodes;i++) [

//Recover dtable and htable from NodeMemory
tempiv = (INTVECTORt&)nodemem[i];
for (j0O;j<nodes;j++)

for (k=O;k<MAXLINKS;k++)
dtablef ii[k] = tempivtj*MAXLINKS~k];

for (j=0;j<nodes;j++)
for (k=0;k<MAXLINKS;k++)
htable[j][k] = tempiv[nodes*MAXLINKS + j*MAXLINKS+k];

for (kO; k<MAXLINKS; k++)
htable~i] [k] = i;

//Recover this node's working environment
for (j0; j<MAXLINKS; j++) neighbor~jl = NeighMatrix~i*MAXLINKS+j];

//Update Neighbors -- Somewhat like Garcia (4)
float newd, oldd, deltad;

if (simtime > 0) [ //We're cheating first time through
for (j0o; j<MAXLINKS; j±±)

//Check for link down
if (neighbor~j] == -1)

for (k=0;k<nodes;k++) [dtable[k][j] = MAXDIST; htable[k][j] =-1;1

htable[i][j] = i
1//if lost link

//Check if new cost on existing link
if (neighbor[jI < nodes+l && neighbor[j] > -1)f
newd = SATDIST(i,neighbor[j]);
oldd =RDist[i*nodes+neighbor[j]];
deltad = newd - oldd;
for (k=0;k<nodes;k++)

if (dtable[k] [ji < MAXDIST) dtable~k] [j]=dtable[kl [j] + deltad;
dtablelneighbor[j]] [j] newd; //Kludge
)//if old link

//Check if a new link has been established
if (neighbor[j] > nodes)(

neighbor[j] = neighbor[jI-nodes-l; //un-flag node
newd = SATDIST(i,neighbortjI);
for (k=0;k<nodes;k++) [dtable[k][j] MAXDIST; htable[k][j] =-1;1

dtable[neighbor[j]][j] =newd;
htable[neighbor[j]]tj] = i
htable~i][j] = i; //Head node to ourself is ourself.
)//if new link

1//for j in MAXLINKS
1/if

//Ulpdate routing table from dtable -- Garcia (2)
/This is an unconditional update because this routine handles
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/Satlab(global) updates, so the k=Pij condition in Garcia's
1/algorithm will always hold.

rt-update(i);

//Send updates to neighbors -- Garcia (3)
mnt b,t;
INTVECTOR-t outvect; outvect .ChangeLength(nodes*3, -1);

for (b=O;b<MAXLINKS;b++) [
if (neighbor[bl ! -1) [
for (t0O;t<nodes;t++) [
if (in path(i,b,Vi[t*31))

outvect[t*3+O] = Vi~t*3+O]; //node
outvect[t*3+l1 = (int)MAXDIST; //if in path send infinity
outvect[t*3+2] = -1; //and invalid head node

I else[
outvect[t*3+O] = Vi[t*3+O]; //node
outvect[t*3+l] = Vi[t*3+l]; //distance
outvect[t*3±2] = Vi[t*3+2]; //head node
1//if in -path

1//for t -- all nodes
TempPacket = new (SatDSwdpayload.t);
(*TempPacket)->source = i
(*TempPacket) ->sequencenumber = seqnum++;
(*TempPacket)->Payload = outvect;
(*TempPacket) ->packetlength outvect.Length( )*32 + PACKETHEADERSIZE;
(*TempPacket) ->destination =neighbor [hi;
OutList. Enqueue (*TempPacket);
delete (TempPacket);
NextPacket-Entry ). Schedule (O,trig);
1//if neighbor[bl ! -1

1//for b - - all neighbors

//Re-pack node's environment back into the global variables
for (j=O;j<nodes;j++)

for (k=O; k<MAXLI4KS; k++)
tempiv[j*MAXLIN(S+k] =(int)dtable[j] [k];

for (j=O;j<nodes;j++)
for (k=O; k<MAXLINKS;k++)
tempiv[nodes*MAXLINKS + j*MAXLINKS+k] = htable[j][k];

nodemem~i] = tempiv;
SetNodeMemory (nodemem);
for (j=O; j<MAXLINKS; j++) NeighMatrix[i*MAXLINKS+j] neighbor[j];
SetNeighbors (NeighMatrix);

//Update the Satcom-style RouteMatrix (matrix of next-hops)
for (j0O;j<nodes;j++)
if (i != j) I

if (routes~jI[O] != MAXLINKS+2 && routes[j][O] !=-1)
//If the destination is flagged, we don't have a path yet, or a
// link has failed.
RouteMatrix~i*nodes+j] = neighbor~routes [j] [0]];
Ielse[
RouteMatrix[i*nodes+jl = -1;
1//if destination is not flagged

I else [

RouteMatrix [i*nodes+j ] i;

1/if (i!=)

RDist[i*nodes+j] = routes[jl[1];

I //f or j

SetRoutingtablememory (RouteMatrix);
SetRouteDistance(RDist);
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I//for all nodes (i)

//Output old-style Satcom matrix
routematrix (RouteMatrix);

I //SyncUpdate-Run

Inbound update run processes incoming updates from our neighbors. The incoming

data is merged into our local tables. The algorithm then determines if this new data has

made any significant changes, and if so, sends an update out to all of the current node's

neighbors.

inline void exBF::inbound updateRun(const SatDSwdpayload-t& inbound-update)

nodemem = NodeMemory;
RouteMatrix = Routingtablememory;
NeighMatrix = Neighbors;
RDist = RouteDistance;

gstations = NumberofGroundStations;
nodes = Numberof Satellites;
MAXLINKS = MaxLinks;

TempPacket = (SatDSwdpayload-t*) inbound-update. CopyAro ;

mnt h,i,g;
mnt j,k; // loop counters
simtime = TNow();

1 = (*TempPacket)->destination;
h =(*TempPacket)->sourCe;
g = (*TempPacket)->sequencenumber;

//Recover dtable from NodeMemory
tempiv = (INTVECTOR Tt&)nodemem[i];
for (j=O;j<nodes;j+±)

for (kO; kKAXLINKS; k++)
dtable[j] (k] = tempiv[j*MAXLINKS+kI;

for (j0O;j<nodes;j++)
for (k0O;k<MAXLINKS;k++)
htabletj][k] = tempiv[nodes*MAXLINKS + j*MAXLINKS+k];

for (k0O;k<MAXLINKS;k++)
htable[i] [k] = i

//Recover this node's working environment
for (j=O; j<MAXLINKS; j++) neighbor[j] = NeighMatrix[i*MAXLINKS+j];

mnt link =-l;
for (k=O;k<MAXLINKS;k++) [ //What link is h on?

if (neighbor~k] == h) link=k;
)//for k

I/Input changes to dtable -- (1) from Garcia's algorithm
if (link > -1) [ //Only do updates for recognized neighbors
payload =(*TempPacket)->Payload;
mnt dest, dist, djih;
mnt length=payload.Lengtho);
d-ih = (int)SATDIST(l,h); //Assumes path to h is direct
Vi.ChangeLength(l, -1);
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for (j=O;j<length;j=j+3)
dest=payload[j];
dist=payload [j+l];
if (dest 1=-1 && dest i)

dtable[dest] [link] = djih + dist;
htable[dest] [link] = payload[j+2];
if (dtable[dest] (link] > (int)MAXDTST)
dtable~dest] [link] = (int)MAXDIST;

W/if
]//for j - - all pairs in input
htable[h] [link] = i; //Head of path to neighbor is current node.

1// if recognized neighbor

//Update routing table from dtable -- Garcia (2)
mnt b;
mnt flag = 0;
//Determine if the new data has changed our preferred neighbor
for (j0O;j<nodes;j++)

b = dtable-min(j);
if (b < 0 ) b=0; //If b=-l, there is no path to dest, use any link
if (dtable[j] [hi RDist[i*nodes+j] && j 1= i)

flag = -1;
break;

)//for j

if (flag == -1)
rt-update(i);
Ielse[
Vi.ChangeLength(l, -1);

W/if

//Send updates to neighbors -- Garcia (3)
mnt t;
INTVECTORt outvect; outvect .ChangeLength(nodes*3, -1);

if (Vi.Length() > 1) for (b0O;b<MAXLINKS;b++)[
if (neighbor~bI ! -1) [
for (t=0;t<nodes;t++)[
if (inpath(i,b,vi[t*3])) I

outvect[t*3±O] =Vi[t*3+0]; //node
outvect[t*3+1] = (int)MAXDIST; //if in path send infinity
outvect[t*3+2] = -1; //and invalid head node

I else[
outvect[t*3+0] =Vi[t*3+0]; //node
outvect[t*3+1] =Vi[t*3+l]; //distance
outvect[t*3+2] = Vi[t*3+2]; //head node
)//if in-path

)//for t -- all nodes
(*TempPacket)->source = i
(*TempPacket)->packetlength = outvect.Length() 32 + PACKETHEADERSIZE;
(*TenlpPacket) ->sequencenumber = seqnum++;
(*TempPacket)->Payload = outvect;
(*TempPacket) ->destination = neighbor [b];
OutList. Enqueue(C*TempPacket);
NextPacket-Entry().Schedule(0,trig);
)//if neighbor~b] !=-1

1//for b - - all neighbors

//Re-pack node's environment back into the global variables
for [j0O;j<nodes;j+±)
for [k=0; k<MAXLINKS;k++)

tempiv[J*MAXLINKS+k] = (int)dtabie[j][k];
for (j=0;j<nodes;j++)

for (k=0; k<MAXLINKS; k++)
tempiv[nodes*MAXLINKS + j*MAXLTNKS+k] = htable[j][k];

nodemem~i] = tempiv;
SetNadeMemory (nodemem);
for (j0O; j<AXLTNKS; j++) NeighMatrix[i*MAXLINKS+j] = neighbor[j];
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SetNeighbors(NeighMatrix);

if (Vi.Length() > 1) [

//Update the Satcom-style RouteMatrix (matrix of next-hops)
for (j=0;j<nodes;j++) f
if (i ! j)

if (routes[j][0] != MAXLINKS+2 && routes[j][0] != -1) (
RouteMatrix[i*nodes+j] = neighbor[routes[j][0]];

I else [
RouteMatrix[i*nodes+j] = -1;
//if

I else

RouteMatrix[i*nodes+j]=i;
//if (i != j)

RDist[i*nodes+j] = routes[j] [1];
I //for j

SetRoutingtablememory(RouteMatrix);
SetRouteDistance(RDist);

)//if length Vi > 1

//Output old-style Satcom matrix
routematrix(RouteMatrix);

delete(TempPacket);

// Asynchronous Functions:
inline void exBF::NextPacketRun(const TRIGGER t& NextPacket)

SatDSwdpayload-t *OutPacket;
simtime = TNow();
int i = OutList.Length();
if (i>0) t
OutPacket = (SatDSwdpayload-t *)OutList.Dequeue();
outbound update(*OutPacket);
delete(OutPacket);

)//if i>l

/**** User Code Above Here ****/

B.3 Xref

Because the two routing protocols only route between satellites and SatLab generates the

distances of groundstations and satellites in one table, it is necessary to provide a cross-

referencing feature that tells the simulation which satellite is closest to a particular ground

station. Rather than do this entirely in Designer primitives, the link formation subroutine

from the routing algorithms can be easily adapted to do the job as a stand-alone custom

primitive. The following "xref' primitive does just that.
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o External Ports:

Input: Update is of type TRIGGER

o External Arguments:

(M) "TranslationVector" is of type "INT-VECTOR"

Description: Memory which stores the node number of the satellite closest to each
groundstation.

(M) "Distance table memory" is of type "REAL-VECTOR"

(M) "Number of Satellites" is of type "INTEGER"

(M) "Number of GroundStations" is of type "INTEGER"

o Internal Arguments:
* None *

* Module Name xref
* Template Created By 3.0
* Author: rjanoso
* Last Modification Date: l-Aug-1996 12:06:33
* Template Date: l-Aug-1996 12:06:37

/**** Includes and Defines Below Here ****/
#define MAXDIST 1000000000
/**** Includes and Defines Above Here ****/

/**** Instance Definitions Below Here ****/
// void Init();

/**** Instance Definitions Above Here ****/

/**** User Constructor Code Below Here ****/
/**** User Constructor Code Above Here ****/

/**** User Code Below Here ****/

When triggered by a satellite position update cycle, this routine searches through the

distance table memory for the closest satellite to each groundstation and enters the satellite's

node number in the translation vector element corresponding to the groundstation node

number. A -1 is entered if no satellite is in range.

// Run Functions:
inline void xref: :UpdateRun(const TRIGGER t& Update)

int a,g,s;
int nodes = NumberofGroundStations + NumberofSatellites;
INTVECTOR-t V = TranslationVector;
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if (V.Length() < NumberofGroundStations)
V.ChangeLength(NumberofGroundStations, -1);

for(g=0; g<NumberofGroundStations; g++) t

//Find closest neighbor
int best = -1;
float bdist = MAXDIST;
for (s=0; s<NumberofSatellites; s++) f
a = Distancetablememory[g*nodes+(s+NumberofGroundStations)];
if (a<bdist) f

best s;
bdist = a;
1//if

)//for s -- best and bdist should now have closest sat

V[g] = best;
1//for g
SetTranslationVector (V);

/**** User Code Above Here ***/

B.4 Add Element to Vector

The last custom primitive simply adds some functionality that seemed to be missing

from the provided Designer rn-time library. It takes an input vector, increases its length by

one, and places the integer input into the new position.

o External Ports:

Input: InVect is of type INT-VECTOR

Output: OutVect is of type INT-VECTOR

Input: IntIn is of type INTEGER

o External Arguments:
* None *

o Internal Arguments:
* None *

/*
* Module Name Add Element to Vector
* Template Created By 3.0
* Author: rjanoso
* Last Modification Date: 17-Aug-1996 17:46:50
* Template Date: 17-Aug-1996 17:46:54
*/

/**** Includes and Defines Below Here ****/
/**** Includes and Defines Above Here ****/

/**** Instance Definitions Below Here ****/
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IIvoid Init();
/*~ Instance Definitions Above Here**/

/** User Constructor Code Below Here**/
/** User Constructor Code Above Here**/

/** User Code Below Here**/

//Run Function:
inline void AddElementtoVector::Run(const INTEGER-t& Intln, const INTVECTOR-t& InVect)

mnt newlength = InVect.Length()+l;
INTVECTORt NewVect =InVect;
NewVect. ChangeLength (newlength);
NewVect~newlength-1] = Intln;
OutVect(NewVect);

/** User Code Above Here**/
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APPENDIX C

Modifications to the Darting Algorithm

Correct operation of the Darting algorithm assumes that traffic flows through all

branches of the network; thus eventually disseminating compete topological information to

all nodes. If this is not the case, it is possible for situations to arise where Darting will not

converge to an optimal configuration, and predecessor update packets will be generated

indefinitely. To alleviate this problem, a new type of "ping" packet was added to the

algorithm to enable nodes that detect this type of discrepancy to exercise the portion of the

network that is in question.

Let a subsection of the network be in the state shown in Figure 47, and let the local state

at node a be as shown in Table 4. Let there be a steady stream of traffic from a to g.

Further, let this traffic be traversing the optimal path a-c-d-h-g at a cost of 4.

Table 4: Initial State of
1 2 1 1 2 1 Node A

Known links at a:
a->b=l
a->c=l

1 b->f=l
c->d=1
c->e=2

1 2 1 2 d->h=l

2 2 e->g=3

f->g=2

Figure 47: Degenerate Figure 48: Degenerate g

Topology 1 Topology 2

Now, let the link from d to h fail, as shown in Figure 48. When a next attempts to

transmit to g, it will choose to go though c with an estimated cost from c to g of 3. For this
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first packet, c will agree with the estimate of 3 and forward the packet on to node d. Node

d, having detected the failure of the d-h link, will return the packet to node c along with the

information about the failed link. Node c will then realize that its best path to g lies through

e and will forward the packet accordingly. No further update packets are sent because the

predecessor update mechanism only updates one node upstream from the point at which

the discrepancy is detected.

Now for the next packet, a (not having any new information) will again choose to

forward through node c. At this point, however, c will realize that a is using outdated

information because c's cost to g is now 4, not 3. Unfortunately, when c builds the update

packet to send back to a, it enters the link information from the downstream nodes as

perceived by node c. Thus c will update a with {c-d=1, c-e=2, e-g=2, g-h=1}. However, none

of this is new information to node a! Thus, a's behavior will not change, and it will continue

to estimate the cost from c to g as 3 (via node d) and c will continue to try to update a with

the correct cost of 4, via node e. This will go on indefinitely.

The problem occurs because in this instance, no traffic ever returns to node a through

the path from node d. A mechanism is needed to force traffic to flow through that path to

break the update cycle. Toward this end, a new type of "ping" packet was introduced into

the protocol, and the contents of the fields in a predecessor update packet were slightly

altered. The cost field was changed to reflect the cost to get from node c to node g (the

cost a should have calculated), and the source field in a type 3 packet now has the value of

"g" instead of "c".

Now, when node a receives the predecessor update packet from node c, it can check to

see if the cost asserted by node c matches the cost it calculates from its local tables (after

being updated with the new link information from c). If there is still a discrepancy, node a

generates a ping packet addressed to node d. The ping packet is treated just like a data

packet by each of the intermediate nodes, which place their local link data into the SCL field

of the packet. Once the packet reaches node d, it is turned around by reversing the source
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and destination fields, and returned to node a. Thus, the path from d to a is exercised, and

a will receive the information about the failed link and adjust accordingly.
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